冲击载荷下Ni52Ti48合金的微观响应特性

吕超 张旭平 王桂吉 罗斌强 罗宁 吴恒安 谭福利 赵剑衡 刘仓理 孙承纬

吕超, 张旭平, 王桂吉, 罗斌强, 罗宁, 吴恒安, 谭福利, 赵剑衡, 刘仓理, 孙承纬. 冲击载荷下Ni52Ti48合金的微观响应特性[J]. 高压物理学报, 2021, 35(4): 040107. doi: 10.11858/gywlxb.20210769
引用本文: 吕超, 张旭平, 王桂吉, 罗斌强, 罗宁, 吴恒安, 谭福利, 赵剑衡, 刘仓理, 孙承纬. 冲击载荷下Ni52Ti48合金的微观响应特性[J]. 高压物理学报, 2021, 35(4): 040107. doi: 10.11858/gywlxb.20210769
LÜ Chao, ZHANG Xuping, WANG Guiji, LUO Binqiang, LUO Ning, WU Heng’an, TAN Fuli, ZHAO Jianheng, LIU Cangli, SUN Chengwei. Micro-Scale Response Characteristics of Ni52Ti48 Alloy under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040107. doi: 10.11858/gywlxb.20210769
Citation: LÜ Chao, ZHANG Xuping, WANG Guiji, LUO Binqiang, LUO Ning, WU Heng’an, TAN Fuli, ZHAO Jianheng, LIU Cangli, SUN Chengwei. Micro-Scale Response Characteristics of Ni52Ti48 Alloy under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040107. doi: 10.11858/gywlxb.20210769

冲击载荷下Ni52Ti48合金的微观响应特性

doi: 10.11858/gywlxb.20210769
基金项目: 国家自然科学基金(11972031,12002327)
详细信息
    作者简介:

    吕 超(1993-),男,博士研究生,主要从事极端条件下材料动力学行为研究. E-mail:lvchao595@163.com

    通讯作者:

    王桂吉(1977-),男,博士,研究员,主要从事极端条件下材料动力学行为、新型动高压实验技术研究. E-mail:wangguiji@126.com

  • 中图分类号: O521.2; O347

Micro-Scale Response Characteristics of Ni52Ti48 Alloy under Shock Loading

  • 摘要: 为了了解近等原子比NiTi合金在高压高应变率下的动态变形行为和微结构演化特性及机制,采用实验和分子动力学模拟方法,开展了NiTi冲击压缩和冲击加-卸载拉伸研究。在实验方面,基于大电流脉冲功率CQ-4装置,利用电磁驱动高速飞片,结合动量陷阱和软回收实验技术,开展了冲击压缩与冲击加-卸载拉伸作用下Ni52Ti48合金的动态变形特性研究,借助X射线衍射和电子背散射衍射显微技术,对回收Ni52Ti48合金样品进行微结构特征观察和分析。结果表明,Ni52Ti48在冲击压缩和拉伸下都没有发生马氏体相变,主要变形方式为位错滑移等塑性变形。在分子动力学数值模拟方面,计算结果很好地反映了实验观察到的微结构特征,计算得到的不同初始环境温度和不同冲击速度下Ni52Ti48合金的层裂强度表现出明显的卸载拉伸应变率效应。相关工作加深了对Ni52Ti48合金在高压高应变率下变形行为的理解和认识,为其在极端环境下的安全服役提供了参考。

     

  • 图  EBSD测得的Ni52Ti48合金显微组织的反极图(a)[9]、取向分布散点图(b)及取向分布密度图(c)

    Figure  1.  Inverse polo figure (IPF) map[9] (a), scatter diagrams (b) and contour map (c) of as-received polycrystalline NiTi samples measured by EBSD

    图  电磁驱动平板冲击压缩实验原理(a)及平板冲击压缩实验典型速度曲线(b)[9]

    Figure  2.  Schematic of magnetically driven planar shock experiments (a) and typical velocity profiles of shock wave experiments (b)[9]

    图  电磁驱动平板冲击压缩-卸载拉伸实验原理(a)及样品自由面速度历史(b)[23]

    Figure  3.  Schematic of magnetically driven planar shock compression and unloading tensile experiments (a) and the free surface velocity profiles of samples (b)[23]

    图  初始和实验回收多晶NiTi样品的XRD谱[9]

    Figure  4.  XRD patterns of as-received and experimentally recovered polycrystalline NiTi samples[9]

    图  冲击加载速度up = 0.927 km/s时冲击压缩回收NiTi样品的反极图(a)以及孪晶(b)和再结晶(c)的局部放大图

    Figure  5.  (a) EBSD characterizations of experimentally recovered polycrystalline NiTi samples at shock loading velocity up = 0.927 km/s at room temperature, and the corresponding amplified configurations in (a), which represent (b) twins and (c) re-crystalline, respectively

    图  冲击压缩加载下NiTi样品在横向(x0)、纵向(y0)和法向(z0)的取向分布散点图(a)和取向分布密度图(b)

    Figure  6.  IPF distribution of horizontal (x0), longitudinal (y0) and normal (z0) direction of NiTi under shock compression: (a) scatter diagrams, (b) contour map

    图  NiTi合金初始样品(a)和冲击压缩回收样品(c)的极射赤面(赤道面)投影图及其对应的晶界角度分布(b, d)

    Figure  7.  Pole figures (equatorial plane) of NiTi: (a) as-received and (c) recovered samples under shock compression; (b) and (d): the histograms of frequency and distribution of the boundaries for (a) and (c), respectively

    图  不同冲击粒子速度下的一维应力波剖面演化(a);不同冲击粒子速度下的演化结果比较:(b) 0.6 km/s,(c) 0.8 km/s,(d) 1.0 km/s(不同的状态以红色长划线区分,微结构包括孪晶T1、T2、T3和新晶粒(NG),用CNA方法进行表征,冲击方向用黑色箭头标示);初始奥氏体以及图8(b)图8(c)图8(d)所示nc-NiTi模型的模拟XRD分析结果(e)[20]

    Figure  8.  (a) 1D pressure profiles in nc-NiTi under different shock-loading velocities; comparisons of simulated results corresponding to (a) at initial ambient temperature 300 K and different loading velocities: (b) 0.6 km/s, (c) 0.8 km/s, (d) 1.0 km/s (Different states are distinguished by red long dashes. The microstructures are characterized by CNA methods: twin T1, T2, T3 and new grain (NG). The shock direction is labelled by black arrows.); the simulated XRD patterns (e) of the nc-NiTi models for initial austenite, Fig.8(b), Fig.8(c) and Fig.8(d), respectively[20]

    图  nc-NiTi {112}奥氏体孪晶T1在冲击速度up = 0.6 km/s下的成核和扩展[20]

    Figure  9.  Nucleation and growth of {112} twin T1 in austenite phase at shock loading velocity up = 0.6 km/s for nc-NiTi[20]

    图  10  up = 0.6 km/s和up = 0.8 km/s两种情况下孪晶和位错的竞争机制[20]

    Figure  10.  Competition mechanism of twins and dislocations at up = 0.6 km/s and up = 0.8 km/s[20]

    图  11  up = 1.0 km/s时三叉晶界处形成的非晶剪切带以及B2结构的sc-NiTi和nc-NiTi中非晶剪切带的径向分布函数g(r)[20]

    Figure  11.  Formation of amorphous shear band at grain boundaries (GBs) triple junction for shock loading velocity up = 1.0 km/s, and the radical distribution function g(r) of the B2 structure sc-NiTi and amorphous shear band in nc-NiTi[20]

    图  12  (a)~(c) up = 0.8 km/s时新晶粒的微结构演变,(d)~(f) 微结构演变沿x轴的OM分析结果,(g)~(h) 变形前后B2-NiTi在(011)面上的投影[20]

    Figure  12.  (a)–(c) Microstructural evolution of new grain for shock loading velocity up = 0.8 km/s; (d)–(f) the corresponding region based on OM analysis along the x axis; projection of B2-NiTi crystal position on (011) plane before (g) and after (h) deformation[20]

    图  13  冲击拉伸实验回收样品的EBSD 表征分析结果:(a)~(c) Shot 741, (d)~(f) Shot 739, (g)~(h) Shot 738

    Figure  13.  EBSD characterization analysis results of samples recovered from shock tensile experiments: (a)–(c) Shot 741, (d)–(f) Shot 739, (g)–(h) Shot 738

    图  14  NiTi合金冲击拉伸实验回收样品的极射赤面(赤道面)投影图:(a) Shot 741,$\sigma $H = 6.4 GPa;(b) Shot 738,$\sigma $H = 12.4 GPa

    Figure  14.  Pole figures (equatorial plane) of the NiTi alloy recovered from shock tensile experiments: (a) Shot 741, $\sigma $H = 6.4 GPa; (b) Shot 738, $\sigma $H = 12.4 GPa

    图  15  对应于图13中EBSD表征结果的局部变形程度以及变形结构、再结晶结构和亚结构分布:(a)~(b) Shot 739,$\sigma $H = 8.5 GPa;(c)~(d) Shot 738,$\sigma $H = 12.4 GPa

    Figure  15.  Local deformation degree and distribution of the deformed structure, recrystallized structure, and substructure of the EBSD characterization in Fig.13: (a)–(b) Shot 739, $\sigma $H = 8.5 GPa; (c)–(d) Shot 738, $\sigma $H = 12.4 GPa

    图  16  不同初始环境温度及不同冲击速度下的自由面速度历史

    Figure  16.  Free surface velocity histories corresponding to different shock loading velocities and initial ambient temperatures

    图  17  不同应变率下NiTi合金的层裂强度

    Figure  17.  Spall strength of NiTi alloys at different strain rates

    表  1  实验用NiTi合金材料的基本数据[9]

    Table  1.   Characteristics of as-received NiTi alloy[9]

    Composition$\,\rho $/(g·cm−3)CLO/(km·s−1)Cs/(km·s−1)Cb/(km·s−1)$\nu $TMs/℃TMf/℃TAs/℃TAf/℃
    Ti46–48Ni526.425.4341.7755.0320.436−14.6−19.7−11.4−0.7
    下载: 导出CSV

    表  2  不同初始环境温度下的层裂强度和拉伸应变率

    Table  2.   Spall strength and tensile strain rate at different initial ambient temperatures

    T/Kup/(km·s−1)Binning analysisAcoustic approximation
    $\sigma{ _{ {\rm{sp} } }^{ {\rm{MD} } } }$/GPa${\dot \sigma {_{ {\rm{MD} } }} }$/(1010 s−1) $\sigma {_{ {\rm{sp} } }^{\rm{a} }}$/GPa${\dot \sigma {_{\rm{a} }} }$/(1010 s−1)
    3000.2
    0.4 9.40.711.00.6
    0.610.51.411.20.6
    0.810.51.911.00.7
    5000.2
    0.4 9.01.0 9.51.0
    0.610.02.010.61.1
    0.8 9.92.510.41.1
    10000.2
    0.4 8.10.88.70.7
    0.6 8.91.39.51.0
    0.8 8.32.89.01.3
    下载: 导出CSV
  • [1] STACHIV I, ALARCON E, LAMAC M. Shape memory alloys and polymers for MEMS/NEMS applications: review on recent findings and challenges in design, preparation, and characterization [J]. Metals, 2021, 11(3): 415. doi: 10.3390/met11030415
    [2] ŠITTNER P, HELLER L, PILCH J, et al. Young’s modulus of austenite and martensite phases in superelastic NiTi wires [J]. Journal of Materials Engineering and Performance, 2014, 23(7): 2303–2314. doi: 10.1007/s11665-014-0976-x
    [3] MORGAN N B. Medical shape memory alloy applications: the market and its products [J]. Materials Science and Engineering: A, 2004, 378(1/2): 16–23. doi: 10.1016/j.msea.2003.10.326
    [4] STOECKEL D. Shape memory actuators for automotive applications [J]. Materials & Design, 1990, 11(6): 302–307. doi: 10.1016/0261-3069(90)90013-A
    [5] BIL C, MASSEY K, ABDULLAH E J. Wing morphing control with shape memory alloy actuators [J]. Journal of Intelligent Material Systems and Structures, 2013, 24(7): 879–898. doi: 10.1177/1045389X12471866
    [6] FURUYA Y. Design and material evaluation of shape memory composites [J]. Journal of Intelligent Material Systems and Structures, 1996, 7(3): 321–330. doi: 10.1177/1045389X9600700313
    [7] RAO A, SRINIVASA A R, REDDY J N. Design of shape memory alloy (SMA) actuators [M]. Cham: Springer, 2015.
    [8] CHAU E T F, FRIEND C M, ALLEN D M, et al. A technical and economic appraisal of shape memory alloys for aerospace applications [J]. Materials Science and Engineering: A, 2006, 438/439/440: 589–592. doi: 10.1016/j.msea.2006.02.201
    [9] ZHANG X P, WANG G J, LUO B Q, et al. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate [J]. Journal of Alloys and Compounds, 2018, 731: 569–576. doi: 10.1016/j.jallcom.2017.10.080
    [10] CHEN W W, WU Q P, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s−1 [J]. International Journal of Solids and Structures, 2001, 38(50/51): 8989–8998. doi: 10.1016/S0020-7683(01)00165-2
    [11] NEMAT-NASSER S, CHOI J Y, GUO W G, et al. Very high strain-rate response of a NiTi shape-memory alloy [J]. Mechanics of Materials, 2005, 37(2/3): 287–298. doi: 10.1016/j.mechmat.2004.03.007
    [12] NEMAT-NASSER S, CHOI J Y, GUO W G, et al. High strain-rate, small strain response of a NiTi shape-memory alloy [J]. Journal of Engineering Materials and Technology, 2005, 127(1): 83–89. doi: 10.1115/1.1839215
    [13] GUO W G, SU J, SU Y, et al. On phase transition velocities of NiTi shape memory alloys [J]. Journal of Alloys and Compounds, 2010, 501(1): 70–76. doi: 10.1016/j.jallcom.2010.04.031
    [14] QIU Y, YOUNG M L, NIE X. High strain rate compression of martensitic NiTi shape memory alloys [J]. Shape Memory and Superelasticity, 2015, 1(3): 310–318. doi: 10.1007/s40830-015-0035-y
    [15] NNAMCHI P, YOUNES A, GONZÁLEZ S. A review on shape memory metallic alloys and their critical stress for twinning [J]. Intermetallics, 2019, 105: 61–78. doi: 10.1016/j.intermet.2018.11.005
    [16] YIN Q Y, WU X Q, HUANG C G. Atomistic study on shock behaviour of NiTi shape memory alloy [J]. Philosophical Magazine, 2017, 97(16): 1311–1333. doi: 10.1080/14786435.2017.1294769
    [17] ZHONG Y, GALL K, ZHU T. Atomistic study of nanotwins in NiTi shape memory alloys [J]. Journal of Applied Physics, 2011, 110(3): 033532. doi: 10.1063/1.3621429
    [18] YAZDANDOOST F, MIRZAEIFAR R. Stress wave and phase transformation propagation at the atomistic scale in NiTi shape memory alloys subjected to shock loadings [J]. Shape Memory and Superelasticity, 2018, 4(4): 435–449. doi: 10.1007/s40830-018-0189-5
    [19] WANG M, JIANG S Y, ZHANG Y Q. Phase transformation, twinning, and detwinning of NiTi shape-memory alloy subject to a shock wave based on molecular-dynamics simulation [J]. Materials, 2018, 11(11): 2334. doi: 10.3390/ma11112334
    [20] LV C, ZHANG X P, WANG G J, et al. Twinning and rotational deformation of nanocrystalline NiTi under shock loading [J]. Physical Review Materials, 2020, 4(9): 093607. doi: 10.1103/PhysRevMaterials.4.093607
    [21] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. doi: 10.1063/1.4875705
    [22] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [23] 吕超. 冲击压缩/拉伸载荷下NiTi合金的微结构演化特性及其形成机制研究[D]. 绵阳: 中国工程物理研究院, 2019.
    [24] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [25] LAI W S, LIU B X. Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering [J]. Journal of Physics: Condensed Matter, 2000, 12(5): L53–L60. doi: 10.1088/0953-8984/12/5/101
    [26] WANG L, E J C, CAI Y, et al. Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction [J]. Journal of Applied Physics, 2015, 117(8): 084301. doi: 10.1063/1.4907672
    [27] E J C, TANG M X, FAN D, et al. Deformation of metals under dynamic loading: characterization via atomic-scale orientation mapping [J]. Computational Materials Science, 2018, 153: 338–347. doi: 10.1016/j.commatsci.2018.06.020
    [28] WANG L, ZHAO F, ZHAO F P, et al. Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression [J]. Journal of Applied Physics, 2014, 115(5): 053528. doi: 10.1063/1.4864427
    [29] LI S Z, DING X D, DENG J K, et al. Superelasticity in bcc nanowires by a reversible twinning mechanism [J]. Physical Review B, 2010, 82(20): 205435. doi: 10.1103/PhysRevB.82.205435
    [30] LUO H B, SHENG H W, ZHANG H L, et al. Plasticity without dislocations in a polycrystalline intermetallic [J]. Nature Communications, 2019, 10(1): 3587. doi: 10.1038/s41467-019-11505-1
    [31] OVID’KO I A, SHEINERMAN A G. Nanoscale rotational deformation in solids at high stresses [J]. Applied Physics Letters, 2011, 98(18): 181909. doi: 10.1063/1.3587637
    [32] LUO S N, AN Q, GERMANN T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. Journal of Applied Physics, 2009, 106(1): 013502. doi: 10.1063/1.3158062
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  3647
  • HTML全文浏览量:  733
  • PDF下载量:  61
出版历程
  • 收稿日期:  2021-04-11
  • 修回日期:  2021-05-25

目录

    /

    返回文章
    返回