高压剪切作用下三水铝石的结构稳定性

姜昌国 谭大勇 谢亚飞 罗兴丽 肖万生

姜昌国, 谭大勇, 谢亚飞, 罗兴丽, 肖万生. 高压剪切作用下三水铝石的结构稳定性[J]. 高压物理学报, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766
引用本文: 姜昌国, 谭大勇, 谢亚飞, 罗兴丽, 肖万生. 高压剪切作用下三水铝石的结构稳定性[J]. 高压物理学报, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766
JIANG Changguo, TAN Dayong, XIE Yafei, LUO Xingli, XIAO Wansheng. Investigation on Structural Stability of $\gamma $-Al(OH)3 under High Pressure and Shear Stress[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766
Citation: JIANG Changguo, TAN Dayong, XIE Yafei, LUO Xingli, XIAO Wansheng. Investigation on Structural Stability of $\gamma $-Al(OH)3 under High Pressure and Shear Stress[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766

高压剪切作用下三水铝石的结构稳定性

doi: 10.11858/gywlxb.20210766
基金项目: 国家自然科学基金(41372047,41572030);中国科学院战略性先导科技专项(B类)(XDB18000000)
详细信息
    作者简介:

    姜昌国(1996-),男,硕士研究生,主要从事高压矿物学研究. E-mail:jiangchangguo@gig.ac.cn

    通讯作者:

    谭大勇(1975-),男,博士,副研究员,主要从事高压矿物学研究. E-mail:dytan04@gig.ac.cn

  • 中图分类号: O521.2

Investigation on Structural Stability of $\gamma $-Al(OH)3 under High Pressure and Shear Stress

  • 摘要: 利用旋转式金刚石对顶砧压机(RDAC)结合显微激光拉曼光谱和微区X射线衍射,研究了三水铝石($\gamma $-Al(OH)3)在高压剪切作用下的结构稳定性。常温加压至1.5 GPa,旋转180°后,$\gamma $-Al(OH)3的结构开始转变。初始样品在高波数段的4个羟基伸缩振动峰(3 363、3 434、3 524和3 618 cm−1)相继消失,出现3 303和3 560 cm−1 2个新峰。低波数段拉曼谱强度明显减弱,无非晶态宽峰;Al-O-Al变形振动双峰(568、539 cm−1)和Al-O伸缩振动肩峰(321和307 cm−1)分别融合为一个振动峰;4个羟基变形振动峰(1 052、1 018、981和922 cm−1)仍然可见。继续加压至3.5 GPa,旋转360°后卸至常压,高波数段新出现的两个羟基伸缩振动峰、原Al-O-Al变形振动峰和Al-O伸缩振动峰仍然可见。对比准静水压条件下$\gamma $-Al(OH)3高压相的拉曼谱和相转变压力(约2.7 GPa),认为常温高压剪切作用下$\gamma $-Al(OH)3脱羟基生成了H2O和${\rm{H}}_3{\rm{O}}_2^- $。卸压样品微区的X射线衍射谱进一步揭示,在高压剪切作用下,$\gamma $-Al(OH)3的(OH)-Al-(OH)配位八面体骨架被破坏,沿c轴方向原子叠加的层间距缩小,对称性增强。这种不同于准静水压实验的结构改变来自腔体内压力的不均匀分布(0.5~4.5 GPa)。高压剪切作用下,三水铝石的结构稳定性研究对查明板块冷俯冲带中含水矿物的稳定性,推演俯冲板片的物理化学性质以及板块俯冲的速率具有重要意义。

     

  • 图  $\gamma$-Al(OH)3 的晶体结构(绿色键为层内羟基,黄色键为层间羟基)

    Figure  1.  Crystal structure of $\gamma $-Al(OH)3 (The green binding is intralayer OH, and the yellow binding is interlayer OH.)

    图  RDAC及其工作原理

    Figure  2.  Rotating diamond anvil cell and its operating principle

    图  高压剪切作用下$\gamma $-Al(OH)3在2 800~4 800 cm−1高波数段的代表性拉曼光谱

    Figure  3.  Representative Raman spectra of $\gamma $-Al(OH)3 in the range of 2 800−4 800 cm−1 under high pressure and shear stress

    图  高压剪切作用下$\gamma $-Al(OH)3在100~1 100 cm−1低波数段的代表性拉曼光谱

    Figure  4.  Representative Raman spectra of $\gamma $-Al(OH)3 in the range of 100−1 100 cm−1 under high pressure and shear stress

    图  准静水压作用下$\gamma$-Al(OH)3的代表性拉曼光谱

    Figure  5.  Representative Raman spectra of $\gamma $-Al(OH)3 under quasi-hydrostatic pressure

    图  高压剪切作用前后样品的X射线衍射谱及其晶体结构指认

    Figure  6.  X-ray diffraction spectra of starting material and quenched product and the index of crystal structure

    图  高压剪切实验腔体内的压力分布和测试点的数字、图形标识(a),测试点分布(b),腔体内显微图片(c)

    Figure  7.  (a) Pressure distribution of sample chamber under high pressure and shear stress, and marks of measurement point; (b) distribution of measurement point; (c) microscopic image of sample

  • [1] OHTANI E. The role of water in Earth’s mantle [J]. National Science Review, 2020, 7(1): 224–232. doi: 10.1093/nsr/nwz071
    [2] HIRSCHMANN M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 629–653. doi: 10.1146/annurev.earth.34.031405.125211
    [3] OMORI S, KOMABAYASHI T, MARUYAMA S. Dehydration and earthquakes in the subducting slab: empirical link in intermediate and deep seismic zones [J]. Physics of the Earth and Planetary Interiors, 2004, 146(1/2): 297–311. doi: 10.1016/j.pepi.2003.08.014
    [4] ONO S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: implications for water transport in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B8): 18253–18267. doi: 10.1029/98JB01351
    [5] ZYKOVA A, LIVANOVA A, KOSOVA N, et al. Aluminium oxide-hydroxides obtained by hydrothermal synthesis: influence of thermal treatment on phase composition and textural characteristics [J]. IOP Conference Series: Materials Science and Engineering, 2015, 98: 012032. doi: 10.1088/1757-899X/98/1/012032
    [6] LIU H Z, TSE J S, HU J Z, et al. Structural refinement of the high-pressure phase of aluminum trihydroxide: in-situ high-pressure angle dispersive synchrotron X-ray diffraction and theoretical studies [J]. The Journal of Physical Chemistry B, 2005, 109(18): 8857–8860. doi: 10.1021/jp0501594
    [7] HUANG E, LI A, XU J A, et al. High-pressure phase transition in Al(OH)3: Raman and X-ray observations [J]. Geophysical Research Letters, 1996, 23(22): 3083–3086. doi: 10.1029/96GL03023
    [8] HUANG E, LIN J F, XU J, et al. Compression studies of gibbsite and its high-pressure polymorph [J]. Physics and Chemistry of Minerals, 1999, 26(7): 576–583. doi: 10.1007/s002690050221
    [9] LIU H, HU J, XU J, et al. Phase transition and compression behavior of gibbsite under high-pressure [J]. Physics and Chemistry of Minerals, 2004, 31(4): 240–246. doi: 10.1007/s00269-004-0390-2
    [10] KOMATSU K, KURIBAYASHI T, KUDOH Y, et al. Crystal structures of high-pressure phases in the alumina-water system: Ⅰ. single crystal X-ray diffraction and molecular dynamics simulation of η-Al(OH)3 [J]. Zeitschrift für Kristallographie, 2007, 222(1): 1–12. doi: 10.1524/zkri.2007.222.1.1
    [11] AKAHAMA Y, KAWAMURA H. Diamond anvil Raman gauge in multimegabar pressure range [J]. High Pressure Research, 2007, 27(4): 473–482. doi: 10.1080/08957950701659544
    [12] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [13] RUAN H D, FROST R L, KLOPROGGE J T. Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite [J]. Journal of Raman Spectroscopy, 2001, 32(9): 745–750. doi: 10.1002/jrs.736
    [14] WALRAFEN G E, DOUGLAS R T W. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH [J]. The Journal of Chemical Physics, 2006, 124(11): 114504. doi: 10.1063/1.2121710
    [15] 赵慧芳, 谭大勇, 姜峰, 等. Re-H2O体系高温高压化学反应的拉曼证据 [J]. 高压物理学报, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518

    ZHAO H F, TAN D Y, JIANG F, et al. Raman evidences of chemical reaction of Re-H2O system at high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518
    [16] TSUCHIYA J, TSUCHIYA T, WENTZCOVITCH R M. Vibrational properties of δ-AlOOH under pressure [J]. American Mineralogist, 2008, 93(2/3): 477–482. doi: 10.2138/am.2008.2627
    [17] FRIEDRICH A, HAUSSÜHL E, BOEHLER R, et al. Single-crystal structure refinement of diaspore at 50 GPa [J]. American Mineralogist, 2007, 92(10): 1640–1644. doi: 10.2138/am.2007.2549
    [18] TONEJC A, STUBICAR M, TONEJC A M, et al. Transformation of γ-AlOOH (boehmite) and Al(OH)3 (gibbsite) to α-Al2O3 (corundum) induced by high energy ball milling [J]. Journal of Materials Science Letters, 1994, 13(7): 519–520. doi: 10.1007/BF00540186
    [19] SAALFELD H, WEDDE M. Refinement of the crystal structure of gibbsite, Al(OH)3 [J]. Zeitschrift für Kristallographie-Crystalline Materials, 1974, 139(1): 129–135. doi: 10.1524/zkri.1974.139.16.129
    [20] ZIGAN F, JOSWIG W, BURGER N. Die wasserstoff positionen im bayerit, Al(OH)3 [J]. Zeitschrift für Kristallographie, 1978, 148(3/4): 255–273.
    [21] BOSMANS H J. Unit cell and crystal structure of nordstrandite, Al(OH)3 [J]. Acta Crystallographica Section B, 1970, 26(5): 649–652. doi: 10.1107/S0567740870002911
    [22] CHAO G Y, BAKER J, SABINA A P, et al. Doyleite, a new polymorph of Al(OH)3, and its relationship to bayerite, gibbsite and nordstrandite [J]. The Canadian Mineralogist, 1985, 23(1): 21–28.
  • 加载中
图(7)
计量
  • 文章访问数:  1016
  • HTML全文浏览量:  624
  • PDF下载量:  49
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-04-13
  • 录用日期:  2021-04-29

目录

    /

    返回文章
    返回