δ-(Al,Fe)OOH的高压相变

王宝云 肖万生 宋茂双

王宝云, 肖万生, 宋茂双. δ-(Al,Fe)OOH的高压相变[J]. 高压物理学报, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765
引用本文: 王宝云, 肖万生, 宋茂双. δ-(Al,Fe)OOH的高压相变[J]. 高压物理学报, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765
WANG Baoyun, XIAO Wansheng, SONG Maoshuang. Pressure-Induced Phase Transitions in δ-(Al,Fe)OOH[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765
Citation: WANG Baoyun, XIAO Wansheng, SONG Maoshuang. Pressure-Induced Phase Transitions in δ-(Al,Fe)OOH[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765

δ-(Al,Fe)OOH的高压相变

doi: 10.11858/gywlxb.20210765
基金项目: 国家自然科学基金(41874107);中国科学院战略性先导专项(B类)(XDB18000000)
详细信息
    作者简介:

    王宝云(1992-),男,博士研究生,主要从事高压矿物学研究. E-mail:wangbaoyun@gig.ac.cn

    通讯作者:

    宋茂双(1965-),男,博士,研究员,主要从事矿物岩石物理和实验岩石学研究. E-mail:msong@gig.ac.cn

  • 中图分类号: O521.2; P311.9

Pressure-Induced Phase Transitions in δ-(Al,Fe)OOH

  • 摘要: δ-(Al,Fe)OOH被认为是将水输运到地球核幔边界的可能载体,厘清其在高压下的结构相变与物理性质对于理解深部水循环具有重要意义。利用金刚石压腔和同步辐射X射线衍射,研究了δ-Fe0.08Al0.92OOH(δ-Fe8)的压缩行为。压力-晶胞体积(p-V)曲线表明:δ-Fe8在0~78 GPa经历了氢原子的有序–无序转变和铁的自旋转变。其中氢原子有序–无序转变发生在约9.7 GPa,p-V曲线在相变点出现轻微转折,且轴比a/cb/c对压力的斜率在相变前后发生反转,空间群由P21nm变为Pnnm。铁自旋转变发生在31.5~39.5 GPa,伴随着约2%的晶胞体积塌缩,属于等结构相变。采用Birch-Murnaghan状态方程分段拟合了p-V曲线,得到了各个结构的状态方程参数。用铁高自旋态和低自旋态理想固溶体模型分析了自旋转变区域的p-V数据,拟合得到低自旋分数随压力变化的关系式。计算结果表明,体弹模量和体波速在自旋转变区域会出现软化行为,说明地球内部富集一定数量的δ-Fe8可能造成中下地幔局部体波低速异常。结合前人研究,给出了δ-(Al,Fe)OOH体系的相变压力与铁含量的线性关系式。

     

  • 图  $\delta $相的晶体结构:(a)非对称氢键P21nm相,(b)氢原子无序Pnnm相,(c)对称氢键Pnnm相(大半径银色球、中等半径红色球和小半径白色球分别为Al、O和H原子)

    Figure  1.  Crystal structures of $\delta $ phase: (a) P21nm phase with asymmetric hydrogen bonds, (b) disordered Pnnm phase, (c) Pnnm phase with symmetric hydrogen bonds (Large silver, medium red and small white spheres represent Al, O and H atoms, respectively.)

    图  $\delta $-Fe8的常温常压拉曼光谱(竖线标识拉曼峰的频率,2000~3500 cm−1之间的宽拉曼峰与OH伸缩振动有关)

    Figure  2.  Raman spectrum of $\delta $-Fe8 at ambient conditions (The vertical lines denote the measured shifts of each mode, and the broad bands between 2000 and 3500 cm−1 are related to OH vibration.)

    图  2.5、36.2和78.4 GPa下$\delta $-Fe8的代表性一维XRD积分图谱(衍射峰标记了对应的米勒指数(hkl))

    Figure  3.  Integrated XRD patterns of $\delta $-Fe8 of the collected raw XRD data at 2.5, 36.2 and 78.4 GPa (Indexed diffraction peaks are labeled with (hkl).)

    图  $\delta $-Fe8的晶胞体积随压力的变化关系(黑色圆点为实验数据。实线是基于Birch-Murnaghan状态方程的分段拟合结果:绿色线条代表铁高自旋P21nm相,压力范围为常压至10 GPa;蓝色线条代表铁高自旋氢原子无序和对称氢键Pnnm相,压力范围为10~28 GPa;红色线条代表铁低自旋对称氢键Pnnm相,压力范围为45~78 GPa;紫色虚线是用Birch-Murnaghan状态方程和Wentzcovitch等的理论拟合结果,压力范围为10~78 GPa。黑色虚线标记相边界,压力分别为9.7、31.5和39.5 GPa。)

    Figure  4.  Unit-cell volume of $\delta $-Fe8 as function of pressure (Black circles are experimental data. Solid lines are fitting results using Birch-Murnaghan equation of state (B-M EOS) from ambient pressure to 10 GPa (green line, high spin P21nm phase), and from 10 GPa to 28 GPa (blue line, high-spin disordered and symmetric hydrogen-bond Pnnm phase), and from 45 GPa to 78 GPa (red line, low spin and symmetric hydrogen-bond Pnnm phase). The dash purple line represents modeled results using B-M EOS and Wentzcovitch’s theory from 10 GPa to 78 GPa. The vertical dash black lines mark phase boundaries (9.7, 31.5 and 39.5 GPa).)

    图  $\delta $-Fe8归一化晶格常数随压力的变化关系

    Figure  5.  Normalized lattice constants of $\delta $-Fe8 as function of pressure

    图  $\delta $-Fe8的轴比a/cb/c随压力的变化关系(实心圆点为实验数据,黑色线条为示意曲线)

    Figure  6.  Axial ratios a/c and b/c of $\delta $-Fe8 as function of pressure (Solid circles are experimental data, and the black line is guide to eye.)

    图  $\delta $-Fe8中三价铁的低自旋态分数随压力的变化关系(实心圆点为计算结果,黑色线条为示意曲线)

    Figure  7.  Low-spin fraction of Fe3+ in $\delta $-Fe8 as function of pressure (Solid circles are modeled results, and the black line is guide to eye.)

    图  $\delta $-Fe8的密度$\;\rho $、体弹模量KT和体波速$v_\varPhi $随压力的变化关系

    Figure  8.  Density ($\,\rho $), bulk moduli (KT) and bulk sound velocity ($v_\varPhi $) as functions of pressure for $\delta $-Fe8

    图  $\delta $-Fe8和典型下地幔矿物在高压下的体波速$v_\varPhi $(Brd:布里奇曼石;Ca-Pv:CaSiO3钙钛矿;NAL:新六方富铝相;Fp:Mg0.83Fe0.17O铁方镁石;St:斯石英)

    Figure  9.  Bulk sound velocity ($v_\varPhi $) of $\delta $-Fe8 and other typical lower mantle minerals at high pressure (Brd: bridgmanite; Ca-Pv: CaSiO3 perovskite; NAL: new hexagonal aluminous phase; Fp: ferropericlase (Mg0.83Fe0.17O); St: stishovite)

    图  10  $\delta $-(Al,Fe)OOH中有序不对称氢键P21nm结构到无序对称氢键Pnnm结构的相转变压力与铁含量的关系(a)和三价铁自旋态转变压力与铁含量的关系(b)

    Figure  10.  Transition pressures of (a) ordered P21nm phase with asymmetric hydrogen bonds to disordered Pnnm phase with symmetric hydrogen bonds and (b) high-low spin of Fe (Ⅲ) as a function of FeOOH content in $\delta $-(Al,Fe)OOH

    表  1  δ-Fe8在不同压力下的晶格常数

    Table  1.   Lattice parameters for δ-Fe8 at high pressures

    Pressure/GPaabcV3Pressure/GPaabcV3
    Ambient4.7484(1)4.2447(3)2.8450(1)57.34(2)36.2(2)4.4993(2)4.0049(6)2.7034(3)48.71(3)
    2.5(1)4.7007(1)4.2097(3)2.8315(1)56.03(2)37.7(2)4.4896(2)3.9984(6)2.6988(3)48.45(3)
    4.5(1)4.6900(1)4.1905(3)2.8284(1)55.59(2)39.1(2)4.4806(2)3.9924(5)2.6957(3)48.22(3)
    7.6(1)4.6525(1)4.1566(3)2.8081(1)54.30(2)41.3(2)4.4725(2)3.9845(5)2.6904(3)47.94(3)
    13.2(1)4.6113(1)4.1212(3)2.7845(1)52.92(2)43.5(2)4.4581(3)3.9776(5)2.6862(3)47.63(3)
    15.8(1)4.6040(1)4.1084(2)2.7749(1)52.49(2)45.6(2)4.4636(3)3.9699(5)2.6798(7)47.49(3)
    16.2(1)4.6052(1)4.1055(2)2.7741(1)52.45(2)47.6(3)4.4529(3)3.9635(5)2.6762(7)47.23(3)
    17.7(1)4.5940(1)4.0954(2)2.7678(2)52.07(2)49.9(3)4.4444(3)3.9562(5)2.6703(7)46.95(5)
    19.9(1)4.5902(1)4.0850(2)2.7571(2)51.70(2)52.7(3)4.4408(5)3.9480(5)2.6632(7)46.69(5)
    22.3(1)4.5820(1)4.0712(2)2.7466(2)51.24(2)56.3(3)4.4135(5)3.9416(6)2.6596(7)46.27(5)
    25.8(2)4.5727(1)4.0561(2)2.7352(4)50.73(2)58.3(3)4.4170(8)3.9314(6)2.6502(7)46.02(5)
    27.4(2)4.5695(1)4.0487(2)2.7312(2)50.53(2)61.2(3)4.4079(8)3.9278(6)2.6461(7)45.81(5)
    27.7(2)4.5674(3)4.0488(2)2.7298(2)50.48(3)64.7(3)4.3943(8)3.9186(6)2.6413(7)45.48(5)
    29.1(2)4.5628(3)4.0409(2)2.7255(3)50.25(3)67.5(3)4.3865(8)3.9094(6)2.6345(7)45.18(5)
    30.4(2)4.5475(3)4.0341(2)2.7226(2)49.95(3)70.5(3)4.3924(8)3.9014(6)2.6269(8)45.02(5)
    31.8(2)4.5422(3)4.0286(2)2.7173(2)49.72(3)74.4(3)4.3791(8)3.8915(6)2.6206(8)44.66(5)
    33.6(2)4.5336(3)4.0194(2)2.7119(2)49.42(3)78.0(3)4.3667(8)3.8827(6)2.6126(8)44.30(5)
    34.8(2)4.5103(3)4.0120(6)2.7089(3)49.02(3)78.4(3)4.3597(8)3.8793(6)2.6081(8)44.11(5)
    下载: 导出CSV
  • [1] OHTANI E. The role of water in Earth’s mantle [J]. National Science Review, 2020, 7(1): 224–232. doi: 10.1093/nsr/nwz071
    [2] WANG D J, MOOKHERJEE M, XU Y S, et al. The effect of water on the electrical conductivity of olivine [J]. Nature, 2006, 443(7114): 977–980. doi: 10.1038/nature05256
    [3] 王双杰, 易丽, 王多君, 等. 高温高压下花岗岩部分熔融时的电导率 [J]. 高压物理学报, 2020, 34(5): 051201. doi: 10.11858/gywlxb.20200502

    WANG S J, YI L, WANG D J, et al. Experimental conductivity of partial melt granite at high temperature and pressure [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051201. doi: 10.11858/gywlxb.20200502
    [4] JACOBSEN S D. Effect of water on the equation of state of nominally anhydrous minerals [J]. Reviews in Mineralogy and Geochemistry, 2006, 62(1): 321–342. doi: 10.2138/rmg.2006.62.14
    [5] IWAMORI H. Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O [J]. Earth and Planetary Science Letters, 2004, 227(1/2): 57–71. doi: 10.1016/j.jpgl.2004.08.013
    [6] LITASOV K, OHTANI E. Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa [J]. Physics and Chemistry of Minerals, 2003, 30(3): 147–156. doi: 10.1007/s00269-003-0301-y
    [7] SCHMIDT M W, POLI S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 361–379. doi: 10.1016/S0012-821X(98)00142-3
    [8] DUAN Y F, SUN N Y, WANG S H, et al. Phase stability and thermal equation of state of δ-AlOOH: implication for water transportation to the deep lower mantle [J]. Earth and Planetary Science Letters, 2018, 494: 92–98. doi: 10.1016/j.jpgl.2018.05.003
    [9] OHTANI E, LITASOV K, SUZUKI A, et al. Stability field of new hydrous phase, δ-AlOOH, with implications for water transport into the deep mantle [J]. Geophysical Research Letters, 2001, 28(20): 3991–3993. doi: 10.1029/2001GL013397
    [10] PIET H, LEINENWEBER K D, TAPPAN J, et al. Dehydration of δ-AlOOH in Earth’s deep lower mantle [J]. Minerals, 2020, 10(4): 384. doi: 10.3390/min10040384
    [11] SUZUKI A, OHTANI E, KAMADA T. A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000 ℃ [J]. Physics and Chemistry of Minerals, 2000, 27(10): 689–693. doi: 10.1007/s002690000120
    [12] YOSHINO T, BAKER E, DUFFEY K. Fate of water in subducted hydrous sediments deduced from stability fields of FeOOH and AlOOH up to 20 GPa [J]. Physics of the Earth and Planetary Interiors, 2019, 294: 106295. doi: 10.1016/j.pepi.2019.106295
    [13] ZHANG L, SMYTH J R, KAWAZOE T, et al. Stability, composition, and crystal structure of Fe-bearing phase E in the transition zone [J]. American Mineralogist, 2019, 104(11): 1620–1624. doi: 10.2138/am-2019-6750
    [14] FUKUYAMA K, OHTANI E, SHIBAZAKI Y, et al. Stability field of phase Egg, AlSiO3OH at high pressure and high temperature: possible water reservoir in mantle transition zone [J]. Journal of Mineralogical and Petrological Sciences, 2017, 112(1): 31–35. doi: 10.2465/jmps.160719e
    [15] LIU X C, MATSUKAGE K N, NISHIHARA Y, et al. Stability of the hydrous phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust [J]. American Mineralogist, 2019, 104(1): 64–72. doi: 10.2138/am-2019-6559
    [16] WIRTH R, VOLLMER C, BRENKER F, et al. Inclusions of nanocrystalline hydrous aluminium silicate “phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil) [J]. Earth and Planetary Science Letters, 2007, 259(3/4): 384–399. doi: 10.1016/j.jpgl.2007.04.041
    [17] OHIRA I, OHTANI E, SAKAI T, et al. Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle [J]. Earth and Planetary Science Letters, 2014, 401: 12–17. doi: 10.1016/j.jpgl.2014.05.059
    [18] CHEN H, LEINENWEBER K, PRAKAPENKA V, et al. Possible H2O storage in the crystal structure of CaSiO3 perovskite [J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106412. doi: 10.1016/j.pepi.2019.106412
    [19] KOMATSU K, KURIBAYASHI T, SANO A, et al. Redetermination of the high-pressure modification of AlOOH from single-crystal synchrotron data [J]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62(11): i216–i218. doi: 10.1107/S160053680603916X
    [20] KURIBAYASHI T, SANO-FURUKAWA A, NAGASE T. Observation of pressure-induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray diffraction method [J]. Physics and Chemistry of Minerals, 2014, 41(4): 303–312. doi: 10.1007/s00269-013-0649-6
    [21] SANO-FURUKAWA A, KAGI H, NAGAI T, et al. Change in compressibility of δ-AlOOH and δ-AlOOD at high pressure: a study of isotope effect and hydrogen-bond symmetrization [J]. American Mineralogist, 2009, 94(8/9): 1255–1261. doi: 10.2138/am.2009.3109
    [22] SIMONOVA D, BYKOVA E, BYKOV M, et al. Structural study of δ-AlOOH up to 29 GPa [J]. Minerals, 2020, 10(12): 1055. doi: 10.3390/min10121055
    [23] MASHINO I, MURAKAMI M, OHTANI E. Sound velocities of δ-AlOOH up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 595–609. doi: 10.1002/2015JB012477
    [24] KAGI H, USHIJIMA D, SANO-FURUKAWA A, et al. Infrared absorption spectra of δ-AlOOH and its deuteride at high pressure and implication to pressure response of the hydrogen bonds [J]. Journal of Physics: Conference Series, 2010, 215: 012052. doi: 10.1088/1742-6596/215/1/012052
    [25] SANO-FURUKAWA A, HATTORI T, KOMATSU K, et al. Direct observation of symmetrization of hydrogen bond in δ-AlOOH under mantle conditions using neutron diffraction [J]. Scientific Reports, 2018, 8(1): 15520. doi: 10.1038/S41598-018-33598-2
    [26] CEDILLO A, TORRENT M, CORTONA P. Stability of the different AlOOH phases under pressure [J]. Journal of Physics: Condensed Matter, 2016, 28(18): 185401. doi: 10.1088/0953-8984/28/18/185401
    [27] CORTONA P. Hydrogen bond symmetrization and elastic constants under pressure of δ-AlOOH [J]. Journal of Physics: Condensed Matter, 2017, 29(32): 325505. doi: 10.1088/1361-648X/aa791f
    [28] LI S, AHUJA R, JOHANSSON B. The elastic and optical properties of the high-pressure hydrous phase δ-AlOOH [J]. Solid State Communications, 2006, 137(1/2): 101–106. doi: 10.1016/j.ssc.2005.08.031
    [29] PILLAI S B, JHA P K, PADMALAL A, et al. First principles study of hydrogen bond symmetrization in δ-AlOOH [J]. Journal of Applied Physics, 2018, 123(11): 115901. doi: 10.1063/1.5019586
    [30] TSUCHIYA J, TSUCHIYA T. Elastic properties of δ-AlOOH under pressure: first principles investigation [J]. Physics of the Earth and Planetary Interiors, 2009, 174(1): 122–127. doi: 10.1016/j.pepi.2009.01.008
    [31] TSUCHIYA J, TSUCHIYA T, WENTZCOVITCH R M. Vibrational properties of δ-AlOOH under pressure [J]. American Mineralogist, 2008, 93(2/3): 477–482. doi: 10.2138/am.2008.2627
    [32] BRONSTEIN Y, DEPONDT P, FINOCCHI F. Thermal and nuclear quantum effects in the hydrogen bond dynamical symmetrization phase transition of δ-AlOOH [J]. European Journal of Mineralogy, 2017, 29(3): 385–395. doi: 10.1127/ejm/2017/0029-2628
    [33] KANG D, FENG Y X, YUAN Y, et al. Hydrogen-bond symmetrization of δ-AlOOH [J]. Chinese Physics Letters, 2017, 34(10): 108301. doi: 10.1088/0256-307X/34/10/108301
    [34] XU C W, NISHI M, INOUE T. Solubility behavior of δ-AlOOH and ε-FeOOH at high pressures [J]. American Mineralogist, 2019, 104(10): 1416–1420. doi: 10.2138/am-2019-7064
    [35] GLEASON A E, JEANLOZ R, KUNZ M. Pressure-temperature stability studies of FeOOH using X-ray diffraction [J]. American Mineralogist, 2008, 93(11/12): 1882–1885. doi: 10.2138/am.2008.2942
    [36] THOMPSON E C, DAVIS A H, BRAUSER N M, et al. Phase transitions in ε-FeOOH at high pressure and ambient temperature [J]. American Mineralogist, 2020, 105(12): 1769–1777. doi: 10.2138/am-2020-7468
    [37] NISHI M, KUWAYAMA Y, TSUCHIYA J, et al. The pyrite-type high-pressure form of FeOOH [J]. Nature, 2017, 547(7662): 205–208. doi: 10.1038/nature22823
    [38] HU Q Y, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114
    [39] HOU M Q, HE Y, JANG B G, et al. Superionic iron oxide-hydroxide in Earth’s deep mantle [J]. Nature Geoscience, 2021, 14(3): 174–178. doi: 10.1038/s41561-021-00696-2
    [40] YUAN H S, ZHANG L, OHTANI E, et al. Stability of Fe-bearing hydrous phases and element partitioning in the system MgO-Al2O3-Fe2O3-SiO2-H2O in Earth’s lowermost mantle [J]. Earth and Planetary Science Letters, 2019, 524: 115714. doi: 10.1016/j.jpgl.2019.115714
    [41] OHIRA I, JACKSON J M, SOLOMATOVA N V, et al. Compressional behavior and spin state of δ-(Al,Fe)OOH at high pressures [J]. American Mineralogist, 2019, 104(9): 1273–1284. doi: 10.2138/am-2019-6913
    [42] HSIEH W P, ISHII T, CHAO K H, et al. Spin transition of iron in δ-(Al,Fe)OOH induces thermal anomalies in Earth’s lower mantle [J]. Geophysical Research Letters, 2020, 47(4): e2020GL087036. doi: 10.1029/2020GL087036
    [43] SU X W, ZHAO C S, LV C J, et al. The effect of iron on the sound velocities of δ-AlOOH up to 135 GPa [J]. Geoscience Frontiers, 2021, 12(2): 937–946. doi: 10.1016/j.gsf.2020.08.012
    [44] KAWAZOE T, OHIRA I, ISHII T, et al. Single crystal synthesis of δ-(Al,Fe)OOH [J]. American Mineralogist, 2017, 102(9): 1953–1956. doi: 10.2138/am-2017-6153
    [45] FEI Y W, RICOLLEAU A, FRANK M, et al. Toward an internally consistent pressure scale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9182–9186. doi: 10.1073/pnas.0609013104
    [46] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [47] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
    [48] HOLLAND T J B, REDFERN S A T. Unitcell: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics [J]. Journal of Applied Crystallography, 1997, 30(1): 84. doi: 10.1107/S0021889896011673
    [49] ANGEL R J, ALVARO M, GONZALEZ-PLATAS J. EosFit7c and a Fortran module (library) for equation of state calculations [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2014, 229(5): 405–419. doi: 10.1515/zkri-2013-1711
    [50] BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
    [51] WU Y, WU X, LIN J F, et al. Spin transition of ferric iron in the NAL phase: implications for the seismic heterogeneities of subducted slabs in the lower mantle [J]. Earth and Planetary Science Letters, 2016, 434: 91–100. doi: 10.1016/j.jpgl.2015.11.011
    [52] WENTZCOVITCH R M, JUSTO J F, WU Z, et al. Anomalous compressibility of ferropericlase throughout the iron spin cross-over [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8447–8452. doi: 10.1073/pnas.0812150106
    [53] BALLARAN T B, KURNOSOV A, GLAZYRIN K, et al. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 181–190. doi: 10.1016/j.jpgl.2012.03.029
    [54] LI L, WEIDNER D J, BRODHOLT J, et al. Elasticity of CaSiO3 perovskite at high pressure and high temperature [J]. Physics of the Earth and Planetary Interiors, 2006, 155(3/4): 249–259. doi: 10.1016/j.pepi.2005.12.006
    [55] SOLOMATOVA N V, JACKSON J M, STURHAHN W, et al. Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary [J]. American Mineralogist, 2016, 101(5): 1084–1093. doi: 10.2138/am-2016-5510
    [56] ANDRAULT D, ANGEL R J, MOSENFELDER J L, et al. Equation of state of stishovite to lower mantle pressures [J]. American Mineralogist, 2003, 88(2/3): 301–307. doi: 10.2138/am-2003-2-307
    [57] CASTLE J C, VAN DER HILST R D. Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2): 2095. doi: 10.1029/2001JB000286
    [58] VANACORE E, NIU F L, KAWAKATSU H. Observations of the mid-mantle discontinuity beneath Indonesia from S to P converted waveforms [J]. Geophysical Research Letters, 2006, 33(4): L04302. doi: 10.1029/2005GL025106
    [59] KANESHIMA S, HELFFRICH G. Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area [J]. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 91–103. doi: 10.1016/j.pepi.2010.03.011
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1951
  • HTML全文浏览量:  620
  • PDF下载量:  67
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-04-25

目录

    /

    返回文章
    返回