Borehole Blasting-Induced Fractures in Rocks

GUO Xiaojun WEN Heming

郭晓钧, 文鹤鸣. 岩石钻孔爆炸致裂研究[J]. 高压物理学报, 2021, 35(6): 064203. doi: 10.11858/gywlxb.20210763
引用本文: 郭晓钧, 文鹤鸣. 岩石钻孔爆炸致裂研究[J]. 高压物理学报, 2021, 35(6): 064203. doi: 10.11858/gywlxb.20210763
GUO Xiaojun, WEN Heming. Borehole Blasting-Induced Fractures in Rocks[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064203. doi: 10.11858/gywlxb.20210763
Citation: GUO Xiaojun, WEN Heming. Borehole Blasting-Induced Fractures in Rocks[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064203. doi: 10.11858/gywlxb.20210763

Borehole Blasting-Induced Fractures in Rocks

doi: 10.11858/gywlxb.20210763
Funds: Doctoral Program of Nanchang Hangkong University (EA201511012)
More Information
    Author Bio:

    GUO Xiaojun (1982-), male, doctoral student, major in impact dynamics. E-mail: xjguo@mail.ustc.edu.cn

    Corresponding author: WEN Heming (1965-), male, Ph.D, professor, major in impact dynamics. E-mail: hmwen@ustc.edu.cn
  • 摘要: 岩石在爆炸载荷作用下的动态断裂行为得到了土木、岩石、采矿、石油和天然气等工业领域的关注。为此,研究了岩石钻孔的爆炸致裂问题。首先简单描述了岩石的动态本构模型,确定了花岗岩动态本构模型的参数;然后利用该模型对岩石钻孔爆炸致裂进行了数值模拟;最后将数值模拟结果与花岗岩钻孔爆炸实验结果进行比较。结果表明:数值模拟预测的峰值压力和开裂形貌与文献报道的柱形花岗岩实验观察结果吻合较好,并且数值模拟得出的开裂形貌还与方形花岗岩实验观察结果较一致;开裂形貌主要由拉伸应力造成,而钻孔周围的小裂纹主要由压缩/剪切应力造成。

     

  • Figure  1.  Schematic diagram of EOS[7]

    Figure  2.  Schematic diagram of the residual strength surface for rock in total stress space

    Figure  3.  Comparison of the strength surface between Eq.(6) (with B=2.59, N=0.66) and the triaxial test data for granite[17]

    Figure  4.  Tension dynamic increase factor obtained by Eq.(10) and the test results of various rocks at different strain rates[18-23]

    Figure  5.  Close-up view of the borehole region showing the material positions and the meshes

    Figure  6.  Relation between the peak pressure and the distance from the borehole wall in granite

    Figure  7.  Comparison of the crack patterns between the numerical prediction and the experiment of the cylindrical granite sample[17]

    Figure  8.  Numerically predicted crack pattern resulting from tension stress only

    Figure  9.  Square granite sample

    Figure  10.  Cross-section of the cylindrical RDX enclosed by an aluminum sheath

    Figure  11.  Comparison of the crack patterns between the numerical prediction and the experiment with the square granite No.1 sample

    Figure  12.  Comparison of the crack patterns between the numerical prediction andthe experiment with the square granite No.2 sample

    Table  1.   Values of various parameters for granite[7, 15-17]

    p-$\alpha$ relation
    ${\,\rho {_0}}$/(kg∙m−3)${p{_{ {\text{crush} } } }}$/MPa${p{_{ {\text{lock} } } } }$/GPa nK1/GPa K2/TPaK3/TPa
    266050.53 325.7 −3150
    Strength surfaceStrain rate effect
    ${f{_{\text{c} } } }'$/MPa${f{_{\text{t} } }}$/MPaB NG/GPa ${F{_{\text{m} }} }$Wx
    161.57.32.59 0.6621.9 101.6
    Strain rate effectShear damage
    WyS${\dot \varepsilon {_0}}$/s−1 $\lambda{_\text{s}}$$\lambda{_\text{m}}$ lr
    5.50.81.0 4.60.3 0.450.3
    Lode effectTensile damage
    e1e2e3 c1c2 $\varepsilon $frac
    0.650.015 36.93 0.007
    下载: 导出CSV
  • [1] GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157.
    [2] ROSSMANITH H P, DAEHNKE A, KNASMILLNER R E, et al. Fracture mechanics applications to drilling and blasting [J]. Fatigue & Fracture of Engineering Materials & Structures, 1997, 20(11): 1617–1636.
    [3] ZHANG Y Q, HAO H, LU Y. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading [J]. International Journal of Engineering Science, 2003, 41(9): 917–929. doi: 10.1016/S0020-7225(02)00378-6
    [4] KUTTER H K, FAIRHURST C. On the fracture process in blasting [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 181–202.
    [5] ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002
    [6] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. doi: 10.1016/j.ijimpeng.2007.12.010
    [7] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003
    [8] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. doi: 10.1016/0045-7825(86)90057-5
    [9] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C]//14th International Symposium on Ballistics. Quebec, 1993: 591−600.
    [10] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315−322.
    [11] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873.
    [12] TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. doi: 10.1016/j.ijimpeng.2010.04.004
    [13] KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. doi: 10.1016/j.ijimpeng.2016.04.014
    [14] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. doi: 10.1016/j.ijimpeng.2017.02.016
    [15] XU L Y, XU H, WEN H M. On the penetration and perforation of concrete targets struck transversely by ogival-nosed projectiles—a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 39–55. doi: 10.1016/j.ijimpeng.2018.11.001
    [16] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. doi: 10.1016/j.ijimpeng.2013.04.005
    [17] DEHGHAN BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. doi: 10.1016/j.ijimpeng.2011.08.010
    [18] KHAN A S, IRANI F K. An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite [J]. Mechanics of Materials, 1987, 6(4): 285–292. doi: 10.1016/0167-6636(87)90027-5
    [19] CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. doi: 10.1016/S1365-1609(03)00072-8
    [20] WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup [J]. Mechanics of Materials, 2009, 41(3): 252–260. doi: 10.1016/j.mechmat.2008.10.004
    [21] CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 907−916.
    [22] KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397–406. doi: 10.1016/j.ijrmms.2007.07.003
    [23] ASPRONE D, CADONI E, PROTA A, et al. Dynamic behavior of a Mediterranean natural stone under tensile loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 514–520. doi: 10.1016/j.ijrmms.2008.09.010
    [24] DEHGHAN BANADAKI M M, MOHANTY B. Blast induced pressure in some granitic rocks [C]//Proceedings of the 5th Asian Rock Mechanics Symposium (ARMS-ISRM). Tehran: Curran Associates, 2008: 933−939.
    [25] GUO X J. A study of fracture mechanisms in brittle materials under borehole blasting [D]. Hefei: University of Science and Technology of China, 2013.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  345
  • PDF下载量:  37
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-04-16

目录

    /

    返回文章
    返回