-
摘要: 岩石在爆炸载荷作用下的动态断裂行为得到了土木、岩石、采矿、石油和天然气等工业领域的关注。为此,研究了岩石钻孔的爆炸致裂问题。首先简单描述了岩石的动态本构模型,确定了花岗岩动态本构模型的参数;然后利用该模型对岩石钻孔爆炸致裂进行了数值模拟;最后将数值模拟结果与花岗岩钻孔爆炸实验结果进行比较。结果表明:数值模拟预测的峰值压力和开裂形貌与文献报道的柱形花岗岩实验观察结果吻合较好,并且数值模拟得出的开裂形貌还与方形花岗岩实验观察结果较一致;开裂形貌主要由拉伸应力造成,而钻孔周围的小裂纹主要由压缩/剪切应力造成。Abstract: Dynamic fracture behavior of rocks under blasting loading are a major concern in civil engineering, mining, oil and gas industries. This study presented herein is on the borehole blasting-induced fractures in rocks. The paper consists of two parts: the first part gives a brief description of a constitutive model for rocks subjected to dynamic loading, which is mainly based on a recently developed model for concrete; the second part deals with numerical simulations of borehole blasting-induced fractures in rocks. The values of various parameters in the constitutive model for granite are first estimated and then employed in the numerical simulations. It is demonstrated that the numerical results in terms of peak pressures and crack patterns predicted from the present model are in good agreement with the experimental observations made both in cylindrical granite sample reported in the literature and in square granite specimens conducted in our own laboratory. Moreover, the analysis shows that the experimentally observed crack patterns are mainly caused by tensile stress, while the smaller cracks around borehole are created largely by compression/shear stress.
-
Key words:
- granite rocks /
- constitutive model /
- borehole blasting /
- fracture
-
Figure 1. Schematic diagram of EOS[7]
Figure 3. Comparison of the strength surface between Eq.(6) (with B=2.59, N=0.66) and the triaxial test data for granite[17]
Figure 7. Comparison of the crack patterns between the numerical prediction and the experiment of the cylindrical granite sample[17]
p-$\alpha$ relation ${\,\rho {_0}}$/(kg∙m−3) ${p{_{ {\text{crush} } } }}$/MPa ${p{_{ {\text{lock} } } } }$/GPa n K1/GPa K2/TPa K3/TPa 2660 50.5 3 3 25.7 −3 150 Strength surface Strain rate effect ${f{_{\text{c} } } }'$/MPa ${f{_{\text{t} } }}$/MPa B N G/GPa ${F{_{\text{m} }} }$ Wx 161.5 7.3 2.59 0.66 21.9 10 1.6 Strain rate effect Shear damage Wy S ${\dot \varepsilon {_0}}$/s−1 $\lambda{_\text{s}}$ $\lambda{_\text{m}}$ l r 5.5 0.8 1.0 4.6 0.3 0.45 0.3 Lode effect Tensile damage e1 e2 e3 c1 c2 $\varepsilon $frac 0.65 0.01 5 3 6.93 0.007 -
[1] GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. [2] ROSSMANITH H P, DAEHNKE A, KNASMILLNER R E, et al. Fracture mechanics applications to drilling and blasting [J]. Fatigue & Fracture of Engineering Materials & Structures, 1997, 20(11): 1617–1636. [3] ZHANG Y Q, HAO H, LU Y. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading [J]. International Journal of Engineering Science, 2003, 41(9): 917–929. doi: 10.1016/S0020-7225(02)00378-6 [4] KUTTER H K, FAIRHURST C. On the fracture process in blasting [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 181–202. [5] ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002 [6] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. doi: 10.1016/j.ijimpeng.2007.12.010 [7] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003 [8] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. doi: 10.1016/0045-7825(86)90057-5 [9] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C]//14th International Symposium on Ballistics. Quebec, 1993: 591−600. [10] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315−322. [11] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. [12] TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. doi: 10.1016/j.ijimpeng.2010.04.004 [13] KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. doi: 10.1016/j.ijimpeng.2016.04.014 [14] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. doi: 10.1016/j.ijimpeng.2017.02.016 [15] XU L Y, XU H, WEN H M. On the penetration and perforation of concrete targets struck transversely by ogival-nosed projectiles—a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 39–55. doi: 10.1016/j.ijimpeng.2018.11.001 [16] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. doi: 10.1016/j.ijimpeng.2013.04.005 [17] DEHGHAN BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. doi: 10.1016/j.ijimpeng.2011.08.010 [18] KHAN A S, IRANI F K. An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite [J]. Mechanics of Materials, 1987, 6(4): 285–292. doi: 10.1016/0167-6636(87)90027-5 [19] CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. doi: 10.1016/S1365-1609(03)00072-8 [20] WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup [J]. Mechanics of Materials, 2009, 41(3): 252–260. doi: 10.1016/j.mechmat.2008.10.004 [21] CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 907−916. [22] KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397–406. doi: 10.1016/j.ijrmms.2007.07.003 [23] ASPRONE D, CADONI E, PROTA A, et al. Dynamic behavior of a Mediterranean natural stone under tensile loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 514–520. doi: 10.1016/j.ijrmms.2008.09.010 [24] DEHGHAN BANADAKI M M, MOHANTY B. Blast induced pressure in some granitic rocks [C]//Proceedings of the 5th Asian Rock Mechanics Symposium (ARMS-ISRM). Tehran: Curran Associates, 2008: 933−939. [25] GUO X J. A study of fracture mechanisms in brittle materials under borehole blasting [D]. Hefei: University of Science and Technology of China, 2013.