不同类型装药侵彻安全性数值模拟

白晨 杨昆 吴艳青 高洪泉 薛海蛟

白晨, 杨昆, 吴艳青, 高洪泉, 薛海蛟. 不同类型装药侵彻安全性数值模拟[J]. 高压物理学报, 2021, 35(6): 065101. doi: 10.11858/gywlxb.20210754
引用本文: 白晨, 杨昆, 吴艳青, 高洪泉, 薛海蛟. 不同类型装药侵彻安全性数值模拟[J]. 高压物理学报, 2021, 35(6): 065101. doi: 10.11858/gywlxb.20210754
BAI Chen, YANG Kun, WU Yanqing, GAO Hongquan, XUE Haijiao. Numerical Simulation for PBX Charges Safety of Different Types During Penetration[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065101. doi: 10.11858/gywlxb.20210754
Citation: BAI Chen, YANG Kun, WU Yanqing, GAO Hongquan, XUE Haijiao. Numerical Simulation for PBX Charges Safety of Different Types During Penetration[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065101. doi: 10.11858/gywlxb.20210754

不同类型装药侵彻安全性数值模拟

doi: 10.11858/gywlxb.20210754
基金项目: 国家自然科学基金(11872119);博士后科学基金(BX20200046,2020M680394)
详细信息
    作者简介:

    白 晨(1997-),男,硕士研究生,主要从事弹药安全性研究. E-mail:906587639@qq.com

    通讯作者:

    吴艳青(1974-),女,博士,教授,主要从事高能炸药细观力学研究. E-mail:wuyqing@bit.edu.cn

  • 中图分类号: O341; TJ55

Numerical Simulation for PBX Charges Safety of Different Types During Penetration

  • 摘要: 为研究侵彻过程典型装药的力学响应和损伤点火过程,采用高聚物黏结炸药微裂纹-微孔洞力热化学耦合细观模型,对侵彻过程中PBX装药的力学响应、应力波传播情况和损伤-温升机理进行了研究,标定了两类炸药的本构模型参数,对比分析了压装PBX04和浇注GOFL-5两类装药的力学-损伤-温升响应的差异性。结果表明:GOFL-5炸药的屈服强度、硬化模量、初始微裂纹密度和微裂纹尺寸均小于PBX04炸药;加载初期,压装药头部微裂纹损伤高于浇注药;整个侵彻过程中,两类炸药的微裂纹损伤较严重区域均为装药头部和尾部;剪切裂纹热点为压装药主导的温升机制,且浇注药GOFL-5在侵彻过程中的温升较压装药PBX04更低。

     

  • 图  CMM模型所考虑的微缺陷演化机制与变形机制示意图

    Figure  1.  Conceptual diagram of all kinds of considered mechanisms in the current model

    图  计算与实验得到的两类炸药在不同应变率下的应力-应变曲线

    Figure  2.  Calculated and experimental stress-strain curves of two kinds of explosives at different strain rates

    图  有限元计算模型

    Figure  3.  Finite element calculation model

    图  压装药PBX04的压力演化情况

    Figure  4.  Pressure evolution of PBX04

    图  浇注药GOFL-5的压力演化情况

    Figure  5.  Pressure evolution of GOFL-5

    图  不同时刻两类炸药微裂纹损伤演化情况

    Figure  6.  Evolution of microcrack damage of two kinds of explosives

    图  不同时刻两类炸药的微孔洞损伤演化

    Figure  7.  Evolution of microvoid damage of two kinds of explosives

    图  不同时刻PBX04中微裂纹与微孔洞相关热点温度曲线

    Figure  8.  Microcrack and microvoid related hotspot temperature evolution curves for PBX04

    图  不同时刻GOFL-5中微裂纹与微孔洞相关热点温度曲线

    Figure  9.  Microcrack and microvoid related hotspot temperature evolution curves for GOFL-5

    图  10  微裂纹不同扩展形态示意图

    Figure  10.  Schematic diagram of different propagation patterns of microcracks

    图  11  PBX04装药中不同位置的微裂纹状态频率分布

    Figure  11.  Frequency distribution of microcracks state in different positions of PBX04 charge

    表  1  GOFL-5与PBX04材料参数

    Table  1.   Material parameters for GOFL-5 and PBX04

    Material$\;\rho $0/(kg·m−3)G/GPa$\nu$G1/MPaG2/MPaG3/MPaG4/MPaG5/MPa${\tau{_1^{-1} } } /{\rm{s} }{^{-1} }$
    GOFL-51 7500.550.3 167 30.45 90.03 185.6 120.00
    PBX041 8208.250.31 9401 175.001 521.001 909.01 688.00
    Material${\tau{_2^{-1} } } /{\rm{s} }{^{-1} }$${\tau{_3^{-1} } } /{\rm{s} }{^{-1} }$${\tau{_4^{-1} } } /{\rm{s} }{^{-1} }$${\tau{_5^{-1} } } /{\rm{s} }{^{-1} }$$\sigma{{_0}}$/MPaCh/MPan${\bar c}$0/μm
    GOFL-57.32 × 1037.32 × 1047.32 × 1057.32 × 106 2.20.76 4.50.4530
    PBX049.00 × 1039.00 × 1049.00 × 1052.00 × 10640.00.101500.01.0030
    MaterialN0/cm−3$\bar \gamma $/(J·m−2)${\dot c_{\max }}$/(m·s–1)$\;\mu_{\rm{s}}$mf0/(m·s–1)kwc0/(m·s–1)s $\varGamma $
    GOFL-5 30.53000.35.00.012.01 0000.46 0.89
    PBX043001.43000.55.00.012.02 5002.26 1.50
    下载: 导出CSV

    表  2  弹体材料参数

    Table  2.   Parameters of projectile material

    Physical properties Johnson-Cook model
    $\;\rho $/(g·cm−3)c/(J·kg−1·K−1)$\kappa $/(kW·m−1·K−1)$\alpha $/(m·K−1)Tm/℃G/GPa NM
    7.8247838.113.24 × 10−51 793.15 774.970.26 1.03
    下载: 导出CSV
    Johnson-Cook model Damage model
    C1/MPaC2/MPa C3 C4 D1 D2 D3 D4 D5
    792.21509.521.4 0 –0.8 2.1 –0.5 20.0 0.61
    下载: 导出CSV

    表  3  混凝土靶板材料参数

    Table  3.   Material parameters of concrete plate target

    Physical properties HJC model
    $\;\rho $/(g·cm−3)c/(J·kg−1·K−1)κ/(kW·m−1·K−1)α/(m·K−1)G/GPaFC/MPaABNC
    2.286541.764.32 × 10−5 16.4040.680.751.650.767.0 × 10−3
    下载: 导出CSV
    HJC model Damage model
    pC/MPaUC pL/GPa UL K1/GPa K2/GPa K3/GPa D1 D2 $\varepsilon $min
    13.565.80 × 10−4 1.05 0.10 17.40 38.80 29.80 0.03 1.0 0.01
    下载: 导出CSV
  • [1] 唐明峰, 李明, 蓝林钢. 浇注PBX力学性能的研究进展 [J]. 含能材料, 2013, 21(6): 812–817. doi: 10.3969/j.issn.1006-9941.2013.06.024

    TANG M F, LI M, LAN L G. Review on the mechanical properties of cast PBXs [J]. Chinese Journal of Energetic Materials, 2013, 21(6): 812–817. doi: 10.3969/j.issn.1006-9941.2013.06.024
    [2] 李媛媛, 南海. 国外浇注PBX炸药在硬目标侵彻武器中的应用 [J]. 飞航导弹, 2012(11): 88–91.

    LI Y Y, NAN H. Application of foreign casting PBX explosive in hard target penetration weapons [J]. Cruise Missile, 2012(11): 88–91.
    [3] 吴会民, 卢芳云, 卢力, 等. 三种含能材料力学行为应变率效应的实验研究 [J]. 含能材料, 2004, 12(4): 40–43.

    WU H M, LU F Y, LU L, et al. Experimental studies on strain rate effects of mechanical behaviors of energetic materials [J]. Chinese Journal of Energetic Materials, 2004, 12(4): 40–43.
    [4] 韩小平, 张元冲, 沈亚鹏, 等. Comp. B复合炸药动态压缩力学性能和本构关系的研究 [J]. 实验力学, 1996, 11(3): 303–310.

    HAN X P, ZHANG Y C, SHEN Y P, et al. Dynamic behavior and constitutive model of Comp. B explosive [J]. Journal of Experimental Mechanics, 1996, 11(3): 303–310.
    [5] 罗景润. PBX的损伤、断裂及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2001.

    LUO J R. Study on damage, fracture and constitutive relation of PBX [D]. Mianyang: China Academy of Engineering Physics, 2001.
    [6] MA X, LI X G, ZHENG X X, et al. Weak shock loadings induce potential hot spots formation around an intergranular pore [J]. Journal of Applied Physics, 2017, 121(11): 115102. doi: 10.1063/1.4978355
    [7] MA X, LI X G, ZHENG X X, et al. Crack initiation and potential hot-spot formation around a cylindrical defect under dynamic compression [J]. Journal of Applied Physics, 2017, 122(18): 185104. doi: 10.1063/1.4998679
    [8] 李英雷, 李大红, 胡时胜, 等. TATB钝感炸药本构关系的实验研究 [J]. 爆炸与冲击, 1999, 19(4): 353–359. doi: 10.3321/j.issn:1001-1455.1999.04.011

    LI Y L, LI D H, HU S S, et al. Experimental study on constitutive relation of TATB insensitive explosive [J]. Explosion and Shock Waves, 1999, 19(4): 353–359. doi: 10.3321/j.issn:1001-1455.1999.04.011
    [9] 李俊玲, 卢芳云, 傅华, 等. 某PBX炸药的动态力学性能研究 [J]. 高压物理学报, 2011, 25(2): 159–164. doi: 10.11858/gywlxb.2011.02.012

    LI J L, LU F Y, FU H, et al. Research on the dynamic behavior of a PBX explosive [J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 159–164. doi: 10.11858/gywlxb.2011.02.012
    [10] TAN H. The cohesive law of particle/binder interfaces in solid propellants [J]. Progress in Propulsion Physics, 2011, 2: 59–66.
    [11] WANG J C, LUO J R. Predicting the effective elastic properties of polymer bonded explosives based on micromechanical methods [J]. Journal of Energetic Materials, 2018, 36(2): 211–222. doi: 10.1080/07370652.2017.1354098
    [12] BENELFEKKAH A, FRACHON A, GRATTON M, et al. Analytical and numerical comparison of discrete damage models with induced anisotropy [J]. Engineering Fracture Mechanics, 2014, 121/122: 28–39. doi: 10.1016/j.engfracmech.2014.03.022
    [13] PICART D, BENELFELLAH A, BRIGOLLE J L, et al. Characterization and modeling of the anisotropic damage of a high-explosive composition [J]. Engineering Fracture Mechanics, 2014, 131: 525–537. doi: 10.1016/j.engfracmech.2014.09.009
    [14] 张馨予, 吴艳青, 黄风雷. PBX装药弹体侵彻混凝土薄板的数值模拟 [J]. 含能材料, 2018, 26(1): 101–108. doi: 10.11943/j.issn.1006-9941.2018.01.013

    ZHANG X Y, WU Y Q, HUANG F L. Numerical simulation on the dynamic damage of PBX charges filled in projectiles during penetrating thin concrete targets [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 101–108. doi: 10.11943/j.issn.1006-9941.2018.01.013
    [15] 石啸海, 余春祥, 戴开达, 等. 侵彻过程中弹头形状对PBX炸药损伤的影响 [J]. 弹箭与制导学报, 2019, 39(3): 81–85.

    SHI X H, YU C X, DAI K D, et al. The influence of nose shape to dynamic damage of PBX charge during the penetration process [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 81–85.
    [16] 石啸海, 戴开达, 陈鹏万, 等. 战斗部侵彻过程中PBX装药动态损伤数值模拟 [J]. 中国测试, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026

    SHI X H, DAI K D, CHEN P W, et al. Numerical simulation of dynamic damage of PBX charge during the warhead penetration process [J]. China Measurement and Test, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026
    [17] 成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004

    CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004
    [18] LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. doi: 10.3390/polym12061342
    [19] YANG K, WU Y Q, HUANG F L. Damage and hotspot formation simulation for impact-shear loaded PBXs using combined microcrack and microvoid model [J]. European Journal of Mechanics-A/Solids, 2020, 80: 103924. doi: 10.1016/j.euromechsol.2019.103924
    [20] YANG K, WU Y Q, HUANG F L. Microcrack and microvoid dominated damage behaviors for polymer bonded explosives under different dynamic loading conditions [J]. Mechanics of Materials, 2019, 137: 103130. doi: 10.1016/j.mechmat.2019.103130
    [21] DANCYGIER A N. Concrete strength effect on penetration and perforation resistance to impact of non-deforming projectiles [C]//8th International Symposium on Plasticity and Impact Mechanics. Delhi, India, 2003: 826–832.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  573
  • PDF下载量:  75
出版历程
  • 收稿日期:  2021-03-27
  • 修回日期:  2021-04-16

目录

    /

    返回文章
    返回