节理几何参数对岩体力学特征的影响

王正堂 张祺 王晨龙 赵婷婷 王志勇

王正堂, 张祺, 王晨龙, 赵婷婷, 王志勇. 节理几何参数对岩体力学特征的影响[J]. 高压物理学报, 2021, 35(6): 064202. doi: 10.11858/gywlxb.20210753
引用本文: 王正堂, 张祺, 王晨龙, 赵婷婷, 王志勇. 节理几何参数对岩体力学特征的影响[J]. 高压物理学报, 2021, 35(6): 064202. doi: 10.11858/gywlxb.20210753
WANG Zhengtang, ZHANG Qi, WANG Chenlong, ZHAO Tingting, WANG Zhiyong. Influence of Joint Geometrical Parameters on Mechanical Properties of Rock Mass[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064202. doi: 10.11858/gywlxb.20210753
Citation: WANG Zhengtang, ZHANG Qi, WANG Chenlong, ZHAO Tingting, WANG Zhiyong. Influence of Joint Geometrical Parameters on Mechanical Properties of Rock Mass[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064202. doi: 10.11858/gywlxb.20210753

节理几何参数对岩体力学特征的影响

doi: 10.11858/gywlxb.20210753
基金项目: 国家自然科学基金(11502155);山西省自然科学基金(201901D211112,201901D211066)
详细信息
    作者简介:

    王正堂(1993-),男,硕士研究生,主要从事离散元模拟研究. E-mail:2655726987@qq.com

    通讯作者:

    张 祺(1985-),男,博士,副教授,主要从事离散元模拟研究. E-mail:zq_2012@126.com

  • 中图分类号: O346.5; TU458

Influence of Joint Geometrical Parameters on Mechanical Properties of Rock Mass

  • 摘要: 岩体作为由完整岩块和节理组成的离散介质,其力学行为主要取决于节理的几何和力学特征,探明节理对岩体力学行为的影响具有重要的学术价值和工程意义。利用PFC2D软件,建立了人工合成岩体模型(SRM),研究了单轴压缩条件下节理几何参数对岩体力学强度指标和破坏模式等岩体力学特征的影响。通过正交实验分析,探讨了各节理几何参数对岩体强度指标的显著性影响。结果表明:当节理倾角为10°~50°时,节理长度、节理倾角、节理间距以及岩桥长度对岩体单轴压缩强度和弹性模量具有显著影响;当节理倾角为50°~90°时,岩桥长度对岩体单轴压缩强度和弹性模量的影响不明显;节理阶梯角在整个节理倾角范围内对岩体的单轴压缩强度和弹性模量没有显著影响。岩体破坏模式主要受节理倾角和节理阶梯角影响。研究结果可为岩体工程稳定性分析及支护方案设计提供借鉴。

     

  • 图  模型示意图

    Figure  1.  Model diagram

    图  岩体的节理几何参数示意图

    Figure  2.  Schematic of joint geometrical parameters

    图  光滑节理模型标定

    Figure  3.  Calibration of smooth-joint model

    图  节理倾角对岩体强度指标的影响

    Figure  4.  Influence of joint dip angle on strength indices of rock mass

    图  节理倾角对岩体破坏模式的影响(红色为受拉伸破坏裂纹,蓝色为受剪切破坏裂纹)

    Figure  5.  Influence of joint dip angle on failure mode of rock mass (The red denotes the tensile failure and the blue denotes the shear failure)

    图  节理阶梯角对岩体强度指标的影响

    Figure  6.  Influence of joint step angle on strength indices of rock mass

    图  节理阶梯角对岩体破坏模式的影响($ \gamma $ = 90°)

    Figure  7.  Influence of joint step angle on failure mode of rock mass ($ \gamma $ = 90°)

    图  节理长度对岩体强度指标的影响

    Figure  8.  Influence of joint length on strength indices of rock mass

    图  节理长度对岩体破坏模式的影响($ {L}_{\rm{j}}=20\;{\rm{mm}} $

    Figure  9.  Influence of joint length on failure mode of rock mass ($ {L}_{\rm{j}}=20\;{\rm{mm}} $)

    图  10  岩桥长度对岩体强度指标的影响

    Figure  10.  Influence of rock bridge length on strength indices of rock mass

    图  11  岩桥长度对岩体破坏模式的影响($ {L}_{\rm{r}}=40\;{\rm{mm}} $

    Figure  11.  Influence of rock bridge length on failure mode of rock mass ($ {L}_{\rm{r}}=40\;{\rm{mm}} $)

    图  12  节理间距对岩体强度指标的影响

    Figure  12.  Influence of joint spacing on strength indices of rock mass

    图  13  节理间距对岩体破坏模式的影响($ d=40\;{\rm{mm}} $

    Figure  13.  Influence of joint spacing on failure mode of jointed rock mass ($ d=40\;{\rm{mm}} $)

    图  14  不同尺寸节理岩体的破坏模式

    Figure  14.  Failure modes of jointed rock masses in different sizes

    图  15  不同尺寸完整岩体和节理岩体的力学强度指标

    Figure  15.  Mechanical strength indices of intact and jointed rock mass in different sizes

    表  1  颗粒和平直节理模型的细观参数

    Table  1.   Meso parameters of particle and flat-joint model

    $\,\rho /$
    (g·${\rm{cm} }{^{-3}}$)
    ${R}{_{\rm{min} } }/{\rm{mm} }$${R}{_{\rm{max} }}/{R}{_{\rm{min} }}$${\overline {E} }{_{\rm{c} }}/$GPa${\sigma }{_{\rm{c} }}/$MPa$ c/ $MPa${\overline {k} }{^{\rm{n} }}/{\overline {k} }{^{\rm{s} } }$$ \overline {\mu } $$ \overline {\varphi } $/(°)
    2.11.51.52.311.52 ± 0.381.52 ± 0.382.50.3820
    下载: 导出CSV

    表  2  数值模型和实际物理模型的宏观参数对比

    Table  2.   Comparison of macro parameters between numerical and physical model

    Method${\sigma }{_{\rm{u} }}$/MPaE/GPa$ \nu $
    Numerical3.882.420.15
    Experimental[17]3.842.40
    Relative error/%1.040.83
    下载: 导出CSV

    表  3  光滑节理模型的宏观参数标定值和物理实验值对比

    Table  3.   Comparison between the calibrated and the tested macro parameters for smooth-joint model

    Method${\overline {\mu } }{_{\rm{j} }}$${k}{_{ {\rm{n} }{\rm{j} } }}$/(GPa·m−1)${k}{_{ {\rm{s} }{\rm{j} } }}$/(GPa·m−1)
    Numerical0.651.6422.04
    Experimental[17]0.651.6022.00
    Relative error/%02.50 0.18
    下载: 导出CSV

    表  4  因数水平表

    Table  4.   Factor level table

    Joint geometrical parametersFactor levels
    12345
    $\,\beta /$(°)10(50)20(60)30(70)40(80)50(90)
    ${L}{_{\rm{j} }}/{\rm{mm} }$1020304050
    ${L}{_{\rm{r} }}/{\rm{mm} }$1020304050
    $ d/{\rm{mm}} $1020304050
    $ \gamma / $(°)607590105 120
    下载: 导出CSV

    表  5  实验设计及结果($ \,\beta $为10°~50°)

    Table  5.   Experimental design and results ($ \,\beta $: 10°–50°)

    No.$\,\beta /\left(^{\circ }\right)$${L}{_{\rm{j} }}/{\rm{mm} }$${L}{_{\rm{r} }}/{\rm{mm} }$$ d/{\rm{mm}} $$\gamma /\left(^{\circ }\right)$m${\sigma }{_{\rm{u} }}$/MPaE/GPa$ \nu $
    110101010 6012.912.070.200
    21020304012023.722.290.158
    31030502010533.282.200.163
    410402050 9042.712.220.163
    510504030 7552.642.170.175
    620105040 9053.762.320.153
    720202020 7512.282.110.175
    820304050 6022.792.160.164
    92040103012031.061.640.222
    102050301010540.881.140.080
    113010402012043.652.240.153
    123020105010551.992.000.175
    1330303030 9011.961.910.164
    1430405010 7520.761.120.222
    1530502040 6030.951.560.080
    1640103050 7533.492.270.153
    1740205030 6042.141.990.164
    184030201012050.690.750.151
    194040404010511.921.030.131
    2040501020 9020.540.670.224
    215010203010522.932.090.153
    2250204010 9031.001.360.172
    2350301040 7541.531.420.065
    2450403020 6051.061.200.168
    255050505012011.101.530.231
    下载: 导出CSV

    表  6  实验设计及结果($ \,\beta $为50°~90°)

    Table  6.   Experimental design and results ($ \,\beta $: 50°–90°)

    No.$\,\beta /\left(^{\circ }\right)$${L}{_{\rm{j} } }/{\rm{mm} }$${L}{_{\rm{r} }}/{\rm{mm} }$$ d/{\rm{mm}} $$ \gamma /\left(^{\circ }\right) $m${\sigma }{_{\rm{u} }}$/MPaE/GPa$ \nu $
    150101010 6011.661.530.165
    25020304012022.421.970.155
    35030502010531.011.550.124
    450402050 9041.871.590.164
    550504030 7551.031.140.148
    660105040 9053.362.240.150
    760202020 7512.031.540.116
    860304050 6021.541.820.220
    96040103012030.791.030.188
    106050301010540.320.350.276
    117010402012042.542.050.141
    127020105010552.581.730.141
    1370303030 9011.641.520.115
    1470405010 7521.740.620.110
    1570502040 6031.561.240.113
    1680103050 7533.742.210.146
    1780205030 6042.741.950.134
    188030201012051.470.530.078
    198040404010512.591.580.123
    2080501020 9022.190.680.101
    219010203010522.942.050.141
    2290204010 9032.151.120.083
    2390301040 7542.701.440.106
    2490403020 6052.311.100.081
    259050505012012.531.770.125
    下载: 导出CSV

    表  7  节理参数对岩体力学特征影响的显著性分析

    Table  7.   Significance analysis of joint parameter effect on mechanical properties of rock mass

    Factor10° ≤ $\, \beta $< 50°50° ≤ $\, \beta $ ≤ 90°
    ${F}{_{ {\sigma }_{\rm u} }}$${F}{_{E}}$${F}{_{\nu }}$ ${F}{_{ {\sigma }_{\rm u} }}$${F}{_{E}}$${F}{_{\nu }}$
    $\,\beta$40.69**25.98**0.0613.43*0.514.03
    ${L}{_{\rm{j} }}$77.84**27.42**0.4018.48**17.39**0.55
    Lr11.28*2.670.631.052.030.67
    $ d $26.04**20.87**1.1111.95*16.65**1.13
    $ \gamma $1.100.960.471.840.210.73
      Note: Superscript “*” and “**” represent significant and extremely significant, respectively.
    下载: 导出CSV

    表  8  节理几何参数与岩体力学特征之间的回归方程

    Table  8.   Regression equations between joint geometrical parameters and rock mass mechanical properties

    $\,\beta$/(°)Fitting formula${R}{^{2} }$
    10−50${\sigma }{_{\rm{u} }}$ = 3.257 − 0.345$ {\,\beta' } $ − 0.498${L'}{_{\rm{j} } }$ + 0.169${L'}{_{\rm{r} }}$ + 0.255$ {d'} $ + 0.021$ {\gamma '} $0.841
    E = 2.386 − 0.187$ {\,\beta '} $ − 0.208${L'}{_{\rm{j} } }$ + 0.059${L'}{_{\rm{r} } }$ + 0.154$ {d'} $ − 0.034$ {\gamma '} $0.818
    50−90${\sigma }{_{\rm{u} }}$ = 2.103 + 0.017${\,\beta '}$ − 0.455${L'}{_{\rm{j} } }$ + 0.093${L'}{_{\rm{r} } }$ + 0.289$ {d'} $ − 0.067$ {\gamma '} $0.799
    E = 1.598 − 0.015${\,\beta '}$ − 0.269${L'}{_{\rm{j} } }$ + 0.064${L'}{_{\rm{r} } }$ + 0.189$ {d'} $ − 0.020$ {\gamma '} $0.891
      Note: The units of ${\sigma }{_{\rm{u} }}$ and E are MPa and GPa, respectively.
    下载: 导出CSV
  • [1] 蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002: 84−89.

    CAI M F. Rock mechanics and engineering [M]. Beijing: Science Press, 2002: 84−89.
    [2] BAHRANI N, KAISER P K. Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks [J]. Computers and Geotechnics, 2016, 77: 56–67. doi: 10.1016/j.compgeo.2016.04.004
    [3] BRIDEAU M A, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures [J]. Geomorphology, 2009, 103(1): 30–49. doi: 10.1016/j.geomorph.2008.04.010
    [4] MAS IVARS D, PIERCE M E, DARCEL C, et al. The synthetic rock mass approach for jointed rock mass modelling [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 219–244. doi: 10.1016/j.ijrmms.2010.11.014
    [5] YANG X L, YIN J H. Linear Mohr-Coulomb strength parameters from the non-linear Hoek-Brown rock masses [J]. International Journal of Non-Linear Mechanics, 2006, 41(8): 1000–1005. doi: 10.1016/j.ijnonlinmec.2006.08.003
    [6] 咸玉席, 刘志远, 张俊江, 等. 三向围压下碳酸盐岩的动态力学试验 [J]. 高压物理学报, 2019, 33(2): 024201. doi: 10.11858/gywlxb.20180667

    XIAN Y X, LIU Z Y, ZHANG J J, et al. Experimental study on dynamic mechanics of carbonate rock under triaxial confining pressure [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024201. doi: 10.11858/gywlxb.20180667
    [7] 伍杨, 张先锋, 徐晨阳, 等. 岩石材料冲击开坑行为研究 [J]. 高压物理学报, 2017, 31(5): 603–612. doi: 10.11858/gywlxb.2017.05.014

    WU Y, ZHANG X F, XU C Y, et al. Deformation of rock material target under high velocity impact [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 603–612. doi: 10.11858/gywlxb.2017.05.014
    [8] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [9] CUNDALL P A. A discrete numerical model for granular assemblies, numerical model for granular assemblies [J]. Géothechnique, 2008, 29(30): 331–336.
    [10] 陈新, 李东威, 王莉贤, 等. 单轴压缩下节理间距和倾角对岩体模拟试件强度和变形的影响研究 [J]. 岩土工程学报, 2014, 36(12): 2236–2245. doi: 10.11779/CJGE201412011

    CHEN X, LI D W, WANG L X, et al. Experimental study on effect of spacing and inclination angle of joints on strength and deformation properties of rock masses under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2236–2245. doi: 10.11779/CJGE201412011
    [11] BAHAADDINI M, HAGAN P C, MITRA R, et al. Parametric study of smooth joint parameters on the shear behaviour of rock joints [J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 923–940. doi: 10.1007/s00603-014-0641-6
    [12] BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression [J]. Computers and Geotechnics, 2013, 49: 206–225. doi: 10.1016/j.compgeo.2012.10.012
    [13] BAHAADDINI M, SHEIKHPOURKHANI A M, MANSOURI H. Flat-joint model to reproduce the mechanical behaviour of intact rocks [J]. European Journal of Environmental and Civil Engineering, 2021, 25(8): 1427–1448. doi: 10.1080/19648189.2019.1579759
    [14] WANG C L, ZHANG C S, LI Y, et al. Numerical investigation of the mechanical properties of coal masses with T-junctions cleat networks under uniaxial compression [J]. International Journal of Coal Geology, 2019, 202: 128–146. doi: 10.1016/j.coal.2018.12.005
    [15] CHEN M, YANG S Q, RANJITH P G, et al. Cracking behavior of rock containing non-persistent joints with various joints inclinations [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102701. doi: 10.1016/j.tafmec.2020.102701
    [16] VERGARA M R, VAN SINT JAN M, LORIG L. Numerical model for the study of the strength and failure modes of rock containing non-persistent joints [J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1211–1226. doi: 10.1007/s00603-015-0824-9
    [17] PRUDENCIO M, VAN SINT JAN M. Strength and failure modes of rock mass models with non-persistent joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 890–902. doi: 10.1016/j.ijrmms.2007.01.005
    [18] 陈鹏宇, 余宏明. 平直节理黏结颗粒材料宏细观参数关系及细观参数的标定 [J]. 土木建筑与环境工程, 2016, 38(5): 74–84. doi: 10.11835/j.issn.1674-4764.2016.05.010

    CHEN P Y, YU H M. Relationship between macroparameters and microparameters of flat-jointed bonded-particle material and calibration of microparameters [J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(5): 74–84. doi: 10.11835/j.issn.1674-4764.2016.05.010
    [19] 夏露, 刘晓非, 于青春. 基于块体化程度确定裂隙岩体表征单元体 [J]. 岩土力学, 2010, 31(12): 3991–3996, 4005. doi: 10.3969/j.issn.1000-7598.2010.12.047

    XIA L, LIU X F, YU Q C. Determining representative elementary volume of fractured rock mass based on blockiness analysis [J]. Rock and Soil Mechanics, 2010, 31(12): 3991–3996, 4005. doi: 10.3969/j.issn.1000-7598.2010.12.047
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  1036
  • PDF下载量:  52
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-04-20

目录

    /

    返回文章
    返回