高压气体载荷下预制破片与空气冲击波的运动关系

夏晓旭 宁建国 李健

夏晓旭, 宁建国, 李健. 高压气体载荷下预制破片与空气冲击波的运动关系[J]. 高压物理学报, 2021, 35(5): 052301. doi: 10.11858/gywlxb.20210749
引用本文: 夏晓旭, 宁建国, 李健. 高压气体载荷下预制破片与空气冲击波的运动关系[J]. 高压物理学报, 2021, 35(5): 052301. doi: 10.11858/gywlxb.20210749
XIA Xiaoxu, NING Jianguo, LI Jian. Study on Motion Law of Prefabricated Fragment and Air Shock Wave under High Pressure Gas Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052301. doi: 10.11858/gywlxb.20210749
Citation: XIA Xiaoxu, NING Jianguo, LI Jian. Study on Motion Law of Prefabricated Fragment and Air Shock Wave under High Pressure Gas Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052301. doi: 10.11858/gywlxb.20210749

高压气体载荷下预制破片与空气冲击波的运动关系

doi: 10.11858/gywlxb.20210749
基金项目: 国家自然科学基金(11702026)
详细信息
    作者简介:

    夏晓旭(1994-),男,硕士研究生,主要从事战斗部数值仿真研究. E-mail:3120180256@bit.edu.cn

    通讯作者:

    李 健(1985-),男,博士,讲师,主要从事爆轰物理研究. E-mail:jian_li@bit.edu.cn

  • 中图分类号: O389; TJ410.1

Study on Motion Law of Prefabricated Fragment and Air Shock Wave under High Pressure Gas Load

  • 摘要: 冲击波与破片的运动关系直接决定两者对目标的联合毁伤效果,采用有限体积方法和网格自适应技术,对高温高压气体载荷作用下圆形刚体破片的运动规律、冲击波的衰减规律以及两者的运动关系进行了数值模拟研究。结果表明,高温高压气团形成的冲击波与破片作用发生反射和透射,在破片前后形成的压力差是导致其加速的主要原因。在破片数量一定的情况下,破片距离高温高压气团中心越远,初速越小。当破片与高温高压气团中心的间距相同时,破片数量越多,初速越大。同时研究发现,冲击波与刚体球存在复杂的追逐关系:当初速较大时,破片和冲击波相遇两次;初速减小时,二者相遇一次;初速进一步减小时,二者不能相遇。冲击波与刚体球破片的前后关系将会影响它们对目标的毁伤是否存在耦合关系。

     

  • 图  模型示意图

    Figure  1.  Schematic diagram of the model

    图  计算域设置示意图

    Figure  2.  Schematic of the computational domain

    图  网格收敛性测试结果

    Figure  3.  Grid resolution test results

    图  工况24-d0.02不同时刻密度纹影图

    Figure  4.  Schlieren diagram of density at different moments in case 24-d0.02

    图  工况24-d0.02不同时刻空间压力曲线

    Figure  5.  Pressure distribution at different moments in case 24-d0.02

    图  工况24-d0.02不同时刻的密度纹影图

    Figure  6.  Local schlieren photography at different moments in case 24-d0.02

    图  不同工况下冲击波和破片的速度及位移时程曲线

    Figure  7.  Time history curves of velocity and displacement of shock wave and fragment in different cases

    图  工况30-d0.04中局部的压力云图

    Figure  8.  Local pressure contours in case 30-d0.04

    图  不同工况下破片速度的空间分布曲线

    Figure  9.  Spatial distribution of fragment velocity under different working conditions

    图  10  不同工况下相遇时n-tn-xn-v曲线

    Figure  10.  n-t, n-x, n-v curves of encounter under different working conditions

    图  11  统计出的破片-冲击波的相遇情况

    Figure  11.  Encountering statistics of the fragment and shock wave

    表  1  数值模拟初始参数

    Table  1.   Initial parameters of numerical simulation

    R/m$\;\rho$0/(g·cm−3)p0/GPar/m$\;\rho $s0/(g·cm−3)l/m
    0.051.62.6880.017.8150
    下载: 导出CSV
  • [1] MARCHAND K A, VARGAS M M, NIXON J D. The synergistic effects of combined blast and fragment loadings [R]. San Antonio, TX: Southwest Research Institute, 1992.
    [2] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. doi: 10.1016/j.ijimpeng.2009.02.008
    [3] KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65: 146–162. doi: 10.1016/j.ijimpeng.2013.11.009
    [4] LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579.
    [5] 曹兵, 何勇, 李向东. 破片与冲击波耦合作用下巡航导弹发动机毁伤实验研究 [J]. 火工品, 2009(5): 8–12. doi: 10.3969/j.issn.1003-1480.2009.05.003

    CAO B, HE Y, LI X D. Experimental study on cruise missile engine damage under fragment shock wave coupling [J]. Initiators & Pyrotechnics, 2009(5): 8–12. doi: 10.3969/j.issn.1003-1480.2009.05.003
    [6] 张志倩, 赵太勇, 王昭滨, 等. 杀爆战斗部联合作用场的毁伤效能研究 [J]. 兵器装备工程学报, 2020, 41(1): 64–67.

    ZHANG Z Q, ZHAO T Y, WANG Z B, et al. Study on damage effectiveness of combined action field of explosive warhead [J]. Journal of Ordnance Equipment Engineering, 2020, 41(1): 64–67.
    [7] 陈长海, 侯海量, 朱锡, 等. 破片式战斗部空中爆炸下冲击波与破片的耦合作用 [J]. 高压物理学报, 2018, 32(1): 148–156.

    CHEN C H, HOU H L, ZHU X, et al. Coupling effect of shock wave and fragment under air explosion of fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 148–156.
    [8] 陈长海, 侯海量, 李万, 等. 破片式战斗部空中爆炸下冲击波与破片先后作用的临界爆距研究 [J]. 海军工程大学学报, 2018, 30(2): 18–23.

    CHEN C H, HOU H L, LI W, et al. Study on critical detonation distance of shock wave and fragment under air explosion of fragment warhead [J]. Journal of Naval University of Engineering, 2018, 30(2): 18–23.
    [9] 龚超安, 陈智刚, 印立魁. 杀爆战斗部破片与冲击波运动规律研究 [J]. 弹箭与制导学报, 2016, 36(2): 33–36.

    GONG C A, CHEN Z G, YIN L K. Research on the motion law of fragments and shock wave of explosive warhead [J]. Journal of Missile and Guidance, 2016, 36(2): 33–36.
    [10] 王庆. 舱室内爆下冲击波-破片耦合作用损伤评估方法研究 [D]. 太原: 中北大学, 2018: 30–41.

    WANG Q. Study on damage assessment method of shock wave fragment coupling under cabin implosion [D]. Taiyuan: North University of China, 2018: 30–41.
    [11] 陈兴, 周兰伟, 李向东, 等. 破片式战斗部破片与冲击波相遇位置研究 [J]. 高压物理学报, 2018, 32(6): 76–84. doi: 10.11858/gywlxb.20180591

    CHEN X, ZHOU L W, LI X D, et al. Study on the location of fragment and shock wave of fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 76–84. doi: 10.11858/gywlxb.20180591
    [12] 李茂, 朱锡, 侯海量, 等. 冲击波和高速破片对固支方板的联合作用数值模拟 [J]. 中国舰船研究, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009

    LI M, ZHU X, HOU H L, et al. Numerical simulation of combined action of shock wave and high-speed fragment on clamped square plate [J]. Chinese Journal of Ship Research, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009
    [13] 郑红伟, 陈长海, 李茂, 等. 空爆冲击波对不同形状破片的绕流作用仿真分析 [J]. 舰船科学技术, 2019, 41(5): 31–36.

    ZHENG H W, CHEN C H, LI M, et al. Simulation analysis of flow around fragments with different shapes by air blast shock wave [J]. Ship Science and Technology, 2019, 41(5): 31–36.
    [14] 郑红伟, 陈长海, 李茂, 等. 空爆冲击波对高速破片绕流效应的仿真 [J]. 舰船科学技术, 2019, 41(1): 33–38. doi: 10.3404/j.issn.1672-7649.2019.01.006

    ZHENG H W, CHEN C H, LI M, et al. Simulation of the effect of air blast shock wave on the flow around high-speed fragments [J]. Ship Science and Technology, 2019, 41(1): 33–38. doi: 10.3404/j.issn.1672-7649.2019.01.006
    [15] TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009: 115–162.
    [16] LIU L Q, LI X, SHEN Z J. Overcoming shock instability of the HLLE-type Riemann solvers [J]. Journal of Computational Physics, 2020, 418: 109628.
    [17] YEE H C. Upwind and symmetric shock-capturing schemes: NASA-TM-89464 [R]. Moffett Field, CA: Ames Research Center, 1987.
    [18] PANDOLFI M, D’AMBROSIO D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” pheno-menon [J]. Journal of Computational Physics, 2001, 166(2): 271–301. doi: 10.1006/jcph.2000.6652
    [19] LEER B V. Towards the ultimate conservative difference scheme. V. a second-order sequel to Godunov’s method [J]. Journal of Computational Physics, 1979, 32(1): 101–136.
    [20] SCOTT J N, NIU Y Y. Comparison of limiters in flux-split algorithms for Euler equations: AIAA-1993-0068 [R]. Reston, VA: American Institute of Aeronautics and Astronautics, 1993.
    [21] YEE H C, KLOPFER G H, MONTAGNE J L. High resolution shock capturing schemes for inviscid and viscous hypersonic flows [J]. Journal of Computational Physics, 1990, 88(1): 31–61. doi: 10.1016/0021-9991(90)90241-R
    [22] 奥尔连科 Л П. 爆炸物理学 [M]. 3版. 孙承纬, 译. 北京: 科学出版社, 2011: 457–459.

    OРЛЕНКО Л П. Explosion physics [M]. 3rd ed. Translated by SUN C W. Beijing: Science Press, 2011: 457–459.
    [23] AN Z T, WANG C, ZHEN J W, et al. Theoretical study on the action law of explosive fragments and shock wave of conventional ammunition [J]. Blasting, 2012, 29(1): 15–18.
    [24] 梁为民, 张晓忠, 梁仕发, 等. 结构内爆炸破片与冲击波运动规律试验研究 [J]. 兵工学报, 2009, 30(Suppl 2): 223–227.

    LIANG W M, ZHANG X Z, LIANG S F, et al. Experimental study on the motion law of explosive fragments and shock waves in structures [J]. Acta Armamentarii, 2009, 30(Suppl 2): 223–227.
    [25] 隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 279–283.

    SUI S Y, WANG S S. Terminal effect [M]. Beijing: National Defense Industry Press, 2000: 279–283.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1667
  • HTML全文浏览量:  1025
  • PDF下载量:  50
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-04-15

目录

    /

    返回文章
    返回