强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展

王嘉楠 伍鲍 何安民 吴凤超 王裴 吴恒安

王嘉楠, 伍鲍, 何安民, 吴凤超, 王裴, 吴恒安. 强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展[J]. 高压物理学报, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747
引用本文: 王嘉楠, 伍鲍, 何安民, 吴凤超, 王裴, 吴恒安. 强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展[J]. 高压物理学报, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747
WANG Jianan, WU Bao, HE Anmin, WU Fengchao, WANG Pei, WU Heng’an. Research Progress on Dynamic Damage and Failure of Metal Materials under Shock Loading with Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747
Citation: WANG Jianan, WU Bao, HE Anmin, WU Fengchao, WANG Pei, WU Heng’an. Research Progress on Dynamic Damage and Failure of Metal Materials under Shock Loading with Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747

强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展

doi: 10.11858/gywlxb.20210747
基金项目: 科学挑战专题(TZ2016001)
详细信息
    作者简介:

    王嘉楠(1995-),男,博士研究生,主要从事复杂加载下金属材料损伤与破碎行为及其机理研究. E-mail:wjn1995@mail.ustc.edu.cn

    通讯作者:

    吴恒安(1975-),男,博士,教授,主要从事微结构材料行为与设计、固液界面力学与限域传质以及计算力学方法与应用研究. E-mail:wuha@ustc.edu.cn

  • 中图分类号: O347.3

Research Progress on Dynamic Damage and Failure of Metal Materials under Shock Loading with Molecular Dynamics Simulation

  • 摘要: 强冲击下金属材料的动力学过程及其内在的机理分析一直是冲击物理的前沿,无论是在国家基础工程还是尖端武器研制中都具有重要的意义与价值。结合课题组的相关工作,综述了国内外冲击物理领域对金属材料在强冲击作用下动态损伤和破坏行为及其机理等问题的研究进展,重点讨论了金属材料内部及表界面微观结构对损伤破坏机制的影响,介绍了复杂加载条件下材料行为研究的机遇与挑战,并展望了下一步研究工作的重点。

     

  • 图  传统层裂和微层裂破碎过程[34]

    Figure  1.  Damage processes of classical spallation and micro-spallation[34]

    图  冲击熔化时样品的破碎过程[36]

    Figure  2.  Damage process of sample under shock melting[36]

    图  多晶铜内孔洞的成核以及后续长大合并过程[41]

    Figure  3.  Processes of void nucleation, growth and coalescence in polycrystalline copper[41]

    图  不同冲击强度下样品的加载和卸载路径[43]

    Figure  4.  Loading and unloading paths of samples under different shockstrengths[43]

    图  不同冲击加载方向和强度下位错形成的位置差异[46]

    Figure  5.  Differences in the position of dislocations under different shock loading directions and strengths[46]

    图  不同初始结构在冲击加载下形成的内部射流形态[50]

    Figure  6.  Shape of the internal jet under shock loading with different initial structures[50]

    图  初始加载速度为3 km/s时不同初始内部结构的样品沿冲击方向的速度分布:(a)~(d)所对应的样品内部含半径r为3 nm的氦泡,(e)~(g)所对应的样品内部含半径r为3 nm的孔洞,(h)对应的样品内部含半径r为1.5 nm的氦泡[53]

    Figure  7.  Snapshots of velocity maps along the shock direction under the loading condition of 3 km/s: (a)–(d), (e)–(g), and (h) represent the He bubble with r = 3.0 nm, the void with r = 3.0 nm, and the He bubble with r = 1.5 nm in the initial samples, respectively[53]

    图  三角波加载下含沟槽金属表面动力学破碎过程[56]

    Figure  8.  Dynamic fracture process of grooved metal surface under unsupported wave loading[56]

    图  卸载熔化时表面微射流产生[58]

    Figure  9.  Micro-jet formation with release melting[58]

    图  10  不同沟槽角度下微喷射流的物质来源[60]

    Figure  10.  Micro-jets and their sources of different half angles[60]

    图  11  层裂损伤区的微结构演化

    Figure  11.  Microstructure evolution of spall damaged region

  • [1] 郑晓静. 关于极端力学 [J]. 力学学报, 2019, 51(4): 1266–1272. doi: 10.6052/0459-1879-19-189

    ZHENG X J. Extreme mechanics [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266–1272. doi: 10.6052/0459-1879-19-189
    [2] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144.s

    ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144.s
    [3] SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals [J]. Journal of Applied Physics, 2002, 92(10): 5830–5836. doi: 10.1063/1.1515125
    [4] OGORODNIKOV V A, MIKHAĬLOV A L, BURTSEV V V, et al. Detecting the ejection of particles from the free surface of a shock-loaded sample [J]. Journal of Experimental and Theoretical Physics, 2009, 109(3): 530–535. doi: 10.1134/S1063776109090180
    [5] 张林, 李英华, 程晋明, 等. 激光驱动X光背光照相技术在金属靶微层裂研究中的应用探索 [J]. 强激光与粒子束, 2016, 28(4): 041003. doi: 10.11884/HPLPB201628.041003

    ZHANG L, LI Y H, CHENG J M, et al. Exploration of laser-driven X-ray backlighting applied in research of micro-spalls of metal target [J]. High Power Laser and Particle Beams, 2016, 28(4): 041003. doi: 10.11884/HPLPB201628.041003
    [6] BONTAZ-CARION J, PELLEGRINI Y P. X-ray microtomography analysis of dynamic damage in tantalum [J]. Advanced Engineering Materials, 2006, 8(6): 480–486. doi: 10.1002/adem.200600058
    [7] ANDERSON W W, CVERNA F, HIXSON R S, et al. Phase transition and spall behavior in β-TiN [J]. AIP Conference Proceedings, 2000, 505(1): 443–446. doi: 10.1063/1.1307163
    [8] HOLTKAMP D B, CLARK D A, FERM E N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [J]. AIP Conference Proceedings, 2004, 706: 477–482. doi: 10.1063/1.1780281
    [9] KOLLER D D, HIXSON R S, GRAY Ⅲ C T, et al. Explosively driven shock induced damage in OFHC copper [J]. AIP Conference Proceedings, 2006, 845: 599–602. doi: 10.1063/1.2263393
    [10] BECKER R, LEBLANC M M, CAZAMIAS J U. Characterization of recompressed spall in copper gas gun targets [J]. Journal of Applied Physics, 2007, 102(9): 093512. doi: 10.1063/1.2802589
    [11] TURLEY W D, STEVENS G D, HIXSON R S, et al. Explosive-induced shock damage in copper and recompression of the damaged region [J]. Journal of Applied Physics, 2016, 120(8): 085904. doi: 10.1063/1.4962013
    [12] ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead: SAND-76-0542 [R]. Albuquerque, USA: Sandia National Laboratories, 1976.
    [13] ASAY J R. Effect of shock wave rise time on material ejection from aluminum surface: SAND-77-0731 [R]. Albuquerque, USA: Sandia National Laboratories, 1977.
    [14] ASAY J R, BERTHOLF L D. A model for estimating the effects of surface roughness on mass ejection from shocked materials: SAND-78-1256 [R]. Albuquerque, USA: Sandia National Laboratories, 1978.
    [15] VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces [J]. Journal of Applied Physics, 2005, 98(11): 113508. doi: 10.1063/1.2132521
    [16] 文雪峰, 王健, 王晓燕, 等. 微喷射物质作用下脉冲信号电探针的放电机理 [J]. 爆炸与冲击, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06

    WEN X F, WANG J, WANG X Y, et al. Discharging mechanism of pulse signal electric probe conducted by micro-jetting [J]. Explosion and Shock Waves, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06
    [17] 叶雁, 李军, 朱鹏飞, 等. 脉冲X光照相在微物质喷射诊断中的应用 [J]. 高压物理学报, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013

    YE Y, LI J, ZHU P F, et al. Flash X-ray radiography for diagnosing the ejecta from shocked metal surface [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013
    [18] ZELLNER M B, VUNNI G B. Photon doppler velocimetry (PDV) characterization of shaped charge jet formation [J]. Procedia Engineering, 2013, 58: 88–97. doi: 10.1016/j.proeng.2013.05.012
    [19] FRANZKOWIAK J E, PRUDHOMME G, MERCIER P, et al. PDV-based estimation of ejecta particles’ mass-velocity function from shock-loaded tin experiment [J]. Review of Scientific Instruments, 2018, 89(3): 033901. doi: 10.1063/1.4997365
    [20] 汪伟, 李作友, 李欣竹, 等. 用超高速阴影摄影技术研究微喷射现象 [J]. 应用光学, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010

    WANG W, LI Z Y, LI X Z, et al. Study on micro-jet on ultra-high speed shadow photography [J]. Journal of Applied Optics, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010
    [21] 叶雁, 汪伟, 李作友, 等. 用高速摄影和脉冲同轴全息照相联合诊断微射流 [J]. 高压物理学报, 2009, 23(6): 471–475. doi: 10.11858/gywlxb.2009.06.012

    YE Y, WANG W, LI Z Y, et al. High-speed photography and pulsed in-line holography diagnostics of microjet [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 471–475. doi: 10.11858/gywlxb.2009.06.012
    [22] MCMILLAN C, WHIPKEY R. Holographic measurement of ejecta from shocked metal surfaces [C]//Proceedings of SPIE 1032, 18th International Congress on High Speed Photography and Photonics. Xi’an, Shaanxi: SPIE, 1989: 553.
    [23] 邵建立, 何安民, 王裴. 微喷射现象数值模拟研究进展概述 [J]. 高压物理学报, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786

    SHAO J L, HE A M, WANG P. Brief review of research progress on numerical simulation of ejection phenomena [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786
    [24] 周洪强, 张凤国, 潘昊, 等. 材料层裂研究的主要进展 [J]. 高压物理学报, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670

    ZHOU H Q, ZHANG F G, PAN H, et al. Main progress in research on material spalling [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
    [25] 邓小良, 李博, 汤观晴, 等. 分子动力学方法在金属材料动态响应研究中的应用 [J]. 高压物理学报, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750

    DENG X L, LI B, TANG G Q, et al. Application of molecular dynamics simulation to dynamic response of metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750
    [26] BUTTLER W T, WILLIAMS R J R, NAJJAR F M. Foreword to the special issue on ejecta [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 151–155. doi: 10.1007/s40870-017-0120-8
    [27] 王裴, 何安民, 邵建立, 等. 强冲击作用下金属界面物质喷射与混合问题数值模拟和理论研究 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 094608.

    WANG P, HE A M, SHAO J L, et al. Numerical and theoretical investigations of shock-induced material ejection and ejecta-gas mixing [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 094608.
    [28] GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609–2615. doi: 10.1007/s11661-004-0206-5
    [29] HOLIAN B L, LOMDAHL P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science, 1998, 280(5372): 2085–2088. doi: 10.1126/SCIENCE.280.5372.2085
    [30] KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375
    [31] SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. doi: 10.1140/epjd/e2008-00212-2
    [32] LUO S N, GERMANN T C, TONKS D L. Spall damage of copper under supported and decaying shock loading [J]. Journal of Applied Physics, 2009, 106(12): 123518. doi: 10.1063/1.3271414
    [33] XIANG M Z, CHEN J, SU R. Spalling behaviors of Pb induced by ramp-wave-loading: effects of the loading rise time studied by molecular dynamics simulations [J]. Computational Materials Science, 2016, 117: 370–379. doi: 10.1016/j.commatsci.2016.02.004
    [34] XIANG M Z, HU H B, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
    [35] LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J]. Computational Materials Science, 2014, 95: 89–98. doi: 10.1016/j.commatsci.2014.07.014
    [36] SHAO J L, WANG P, HE A M, et al. Molecular dynamics study on the failure modes of aluminium under decaying shock loading [J]. Journal of Applied Physics, 2013, 113(16): 163507. doi: 10.1063/1.4802671
    [37] SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012
    [38] SHAO J L, WANG P, HE A M, et al. Spall strength of aluminium single crystals under high strain rates: molecular dynamics study [J]. Journal of Applied Physics, 2013, 114(17): 173501. doi: 10.1063/1.4828709
    [39] BRINGAE M, CARO A, WANG Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309(5742): 1838–1841. doi: 10.1126/science.1116723
    [40] LUO S N, GERMANN T C, DESAI T G, et al. Anisotropic shock response of columnar nanocrystalline Cu [J]. Journal of Applied Physics, 2010, 107(12): 123507. doi: 10.1063/1.3437654
    [41] DONGARE A M, RAJENDRAN A M, LAMATTINA B, et al. Atomic scale studies of spall behavior in nanocrystalline Cu [J]. Journal of Applied Physics, 2010, 108(11): 113518. doi: 10.1063/1.3517827
    [42] MACKENCHERY K, VALISETTY R R, NAMBURU R R, et al. Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu [J]. Journal of Applied Physics, 2016, 119(4): 044301. doi: 10.1063/1.4939867
    [43] XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
    [44] LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum [J]. Mechanics of Materials, 2015, 84: 12–27. doi: 10.1016/j.mechmat.2015.01.007
    [45] DÁVILA L P, ERHART P, BRINGA E M, et al. Atomistic modeling of shock-induced void collapse in copper [J]. Applied Physics Letters, 2005, 86(16): 161902. doi: 10.1063/1.1906307
    [46] ZHU W J, SONG Z F, DENG X L, et al. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Physical Review B, 2007, 75(2): 024104. doi: 10.1103/PhysRevB.75.024104
    [47] CUI X L, ZHU W J, HE H L, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PHYSREVB.78.024115
    [48] DENG X L, ZHU W J, ZHANG Y L, et al. Configuration effect on coalescence of voids in single-crystal copper under shock loading [J]. Computational Materials Science, 2010, 50(1): 234–238. doi: 10.1016/j.commatsci.2010.08.008
    [49] ZHAO F P, AN Q, LI B, et al. Shock response of a model structured nanofoam of Cu [J]. Journal of Applied Physics, 2013, 113(6): 063516. doi: 10.1063/1.4791758
    [50] ZHAO F P, WU H A, LUO S N. Microstructure effects on shock response of Cu nanofoams [J]. Journal of Applied Physics, 2013, 114(7): 073501. doi: 10.1063/1.4818487
    [51] WANG H Y, LI X S, ZHU W J, et al. Atomistic modelling of the plastic deformation of helium bubbles and voids in aluminium under shock compression [J]. Radiation Effects and Defects in Solids, 2014, 169(2): 109–116. doi: 10.1080/10420150.2013.848449
    [52] SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. doi: 10.1088/0965-0393/22/2/025012
    [53] LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732
    [54] ZHOU T T, HE A M, WANG P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Computational Materials Science, 2019, 162: 255–267. doi: 10.1016/j.commatsci.2019.02.019
    [55] FLANAGAN R M, HAHN E N, GERMANN T C, et al. Molecular dynamics simulations of ejecta formation in helium-implanted copper [J]. Scripta Materialia, 2020, 178: 114–118. doi: 10.1016/j.scriptamat.2019.11.005
    [56] WANG J N, WU F C, ZHU Y, et al. Unsupported shock wave induced dynamic fragmentation of matrix in lead with surface grooves [J]. Computational Materials Science, 2019, 156: 404–410. doi: 10.1016/j.commatsci.2018.10.018
    [57] DE RESSÉGUIER T, PRUDHOMME G, ROLAND C, et al. Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves [J]. Journal of Applied Physics, 2018, 124(6): 065106. doi: 10.1063/1.5040304
    [58] SHAO J L, WANG P, HE A M, et al. Atomistic simulations of shock-induced microjet from a grooved aluminium surface [J]. Journal of Applied Physics, 2013, 113(15): 153501. doi: 10.1063/1.4801800
    [59] WU B, WU F C, ZHU Y B, et al. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks [J]. AIP Advances, 2018, 8(4): 045002. doi: 10.1063/1.5021671
    [60] LI B, ZHAO F P, WU H A, et al. Microstructure effects on shock-induced surface jetting [J]. Journal of Applied Physics, 2014, 115(7): 073504. doi: 10.1063/1.4865798
    [61] DURAND O, SOULARD L. A new method for large scale molecular dynamics simulations of shock-induced ejecta production [J]. AIP Conference Proceedings, 2012, 1426(1): 1247–1250. doi: 10.1063/1.3686506
    [62] DURAND O, JAOUEN S, SOULARD L, et al. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension [J]. Journal of Applied Physics, 2017, 122(13): 135107. doi: 10.1063/1.4994789
    [63] DURAND O, SOULARD L. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method [J]. Journal of Applied Physics, 2012, 111(4): 044901. doi: 10.1063/1.3684978
    [64] DURAND O, SOULARD L. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations [J]. Journal of Applied Physics, 2015, 117(16): 165903. doi: 10.1063/1.4918537
    [65] HE A M, WANG P, SHAO J L. Molecular dynamics simulations of ejecta size distributions for shock-loaded Cu with a wedged surface groove [J]. Computational Materials Science, 2015, 98: 271–277. doi: 10.1016/j.commatsci.2014.11.020
    [66] HE A M, WANG P, SHAO J L, et al. Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading [J]. Chinese Physics B, 2014, 23(4): 047102. doi: 10.1088/1674-1056/23/4/047102
    [67] HE A M, WANG P, SHAO J L. Statistically heterogeneous size distribution of ejecta from shock-loaded Cu with a wedged surface groove [J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24(2): 025002. doi: 10.1088/0965-0393/24/2/025002
    [68] WU F C, ZHU Y B, LI X Z, et al. Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas [J]. Journal of Applied Physics, 2019, 125(18): 185901. doi: 10.1063/1.5086542
    [69] WU B, WU F C, WANG P, et al. Shock-induced ejecta transport and breakup in reactive gas [J]. Physical Chemistry Chemical Physics, 2020, 22(26): 14857–14867. doi: 10.1039/D0CP01831G
    [70] ORO D M, HAMMERBERG J E, BUTTLER W T, et al. A class of ejecta transport test problems [J]. AIP Conference Proceedings, 2012, 1426(1): 1351–1354. doi: 10.1063/1.3686531
    [71] SORENSON D S, PAZUCHANICS P, JOHNSON R P, et al. Ejecta particle-size measurements in vacuum and helium gas using ultraviolet in-line fraunhoferholography: LA-UR-14-24722 [R]. Los Alamos: Los Alamos National Laboratories, 2014.
    [72] HAWKINS M C, THOMAS S A, FENSIN S J, et al. Spall and subsequent recompaction of copper under shock loading [J]. Journal of Applied Physics, 2020, 128(4): 045902. doi: 10.1063/5.0011645
    [73] JONES D R, FENSIN S J, MORROW B M, et al. Shock recompaction of spall damage [J]. Journal of Applied Physics, 2020, 127(24): 245901. doi: 10.1063/5.0011337
    [74] WANG J N, WU F C, WANG P, et al. Double-shock-induced spall and recompression processes in copper [J]. Journal of Applied Physics, 2020, 127(13): 135903. doi: 10.1063/1.5144567
    [75] WANG L, CAI Y, HE A M, et al. Second yield via dislocation-induced premelting in copper [J]. Physical Review B, 2016, 93(17): 174106. doi: 10.1103/PHYSREVB.93.174106
  • 加载中
图(11)
计量
  • 文章访问数:  4772
  • HTML全文浏览量:  1201
  • PDF下载量:  175
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-04-22

目录

    /

    返回文章
    返回