Dynamic Collection and Micro-Growth Mechanism of TiO2 Nanoparticles in Gaseous Detonation Reaction
-
摘要: 在气相爆轰制备纳米TiO2实验中,将设计的可移动纳米粉体收集网台内置于爆轰管内,收集到了爆轰反应过程中生成的纳米TiO2,首次采用实验的方法探讨了气相爆轰制备纳米颗粒的生长机制。经分析发现,网台上与爆轰管壁收集的粉体为金红石相与锐钛矿相TiO2,且网台上TiO2的粒径明显小于管壁上收集的TiO2粒径。网台到爆轰管尾端的距离对颗粒尺寸影响非常显著,距离越近,纳米TiO2的粒径越小。结合爆轰波/冲击波在爆轰管中的传播规律,基于实验观察,进一步揭示了气相爆轰合成纳米颗粒的生长机制。Abstract: During the preparation of nano TiO2 particles via the gaseous detonation method, a portable nano-powder collection platform was located inside the gaseous detonation tube where the nano-TiO2 powders were collected based on the detonation reaction. The growth mechanism of gaseous detonation preparing nanoparticles was investigated experimentally for the first time. The results demonstrated that the TiO2 powders collected from platform and detonation tube wall consisted of rutile and anatase phases, and the particle size of TiO2 from platform is much smaller than that of tube wall. The particle size was significantly affected by the distance from platform to the end of detonation tube, and the closer the distance, the smaller the TiO2 particle size. The growth mechanism of nanoparticles prepared via gaseous detonation method was revealed based on the theory of detonation/shock wave propagation and experimental observation in detonation tube.
-
Key words:
- gaseous detonation method /
- growth mechanism /
- dynamic collection /
- nano particles /
- TiO2
-
图 4 气相爆轰制备的纳米粉体的TEM图像:(a)显示了无可移动收集网台时气相爆轰管收集的纳米颗粒,(b)、(c)、(d)分别显示了可移动收集网台距爆轰管尾端160、320和640 mm时收集的纳米颗粒
Figure 4. TEM images of nano powders prepared by gaseous detonation: (a) Nano powders collected from gaseous detonation tube without collection device; (b), (c), (d) Nano powders on the removable nano powder collection platform at 160, 320, 640 mm away from the end of gaseous detonation tube
-
[1] CHEN Y, FAN Z X, ZHANG Z C, et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications [J]. Chemical Reviews, 2018, 118(13): 6409–6455. doi: 10.1021/acs.chemrev.7b00727 [2] 赵铁军. 气相爆轰合成碳基磁性复合材料及其电磁波吸波性能研究[D]. 大连: 大连理工大学, 2019.ZHAO T J. Study on gaseous detonation preparation and electromagnetic wave absorption property of carbon-based magnetic composites [D]. Dalian: Dalian University of Technology, 2019. [3] STAVER A M, GUBAREVA N V, LYAMKIN A I, et al. Ultrafine diamond powders made by the use of explosion energy [J]. Combustion, Explosion and Shock Waves, 1984, 20(5): 567–570. [4] GREINER N R, PHILLIPS D S, JOHNSON J D, et al. Diamonds in detonation soot [J]. Nature, 1988, 333(6172): 440–442. doi: 10.1038/333440a0 [5] LYAMKINA N E, CHIGANOVA G A, SLABKO V V, et al. Ultrafine Cr-doped Al2O3 prepared by detonation synthesis [J]. Inorganic Materials, 2005, 41(8): 830–835. doi: 10.1007/s10789-005-0221-y [6] QU Y D, LI X J, LI R Y, et al. Preparation and characterization of the TiO2 ultrafine particles by detonation method [J]. Materials Research Bulletin, 2008, 43(1): 97–103. doi: 10.1016/j.materresbull.2007.02.038 [7] SARDAR K, DAN M, SCHWENZER B, et al. A simple single-source precursor route to the nanostructures of AlN, GaN and InN [J]. Journal of Materials Chemistry, 2005, 15(22): 2175–2177. doi: 10.1039/b502887f [8] SUN G L, LI X J, QU Y D, et al. Preparation and characterization of graphite nanosheets from detonation technique [J]. Materials Letters, 2008, 62(4/5): 703–706. doi: 10.1016/j.matlet.2007.06.035 [9] XIE X H, LI X J, YAN H H. Detonation synthesis of zinc oxide nanometer powders [J]. Materials Letters, 2006, 60(25/26): 3149–3152. doi: 10.1016/j.matlet.2006.02.061 [10] LUO N, LI X J, WANG X H, et al. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method [J]. Carbon, 2010, 48(13): 3858–3863. doi: 10.1016/j.carbon.2010.06.051 [11] SONG J L, FENG S A, ZHAO J H, et al. Activated carbon catalyzing the formation of carbon nanotubes [J]. Materials Research Bulletin, 2010, 45(9): 1234–1239. doi: 10.1016/j.materresbull.2010.05.010 [12] WANG C, ZHAN L, WANG Y L, et al. Effect of sulfur on the growth of carbon nanotubes by detonation-assisted chemical vapor deposition [J]. 2010, 257(3): 932−936. [13] WU L S, YAN H H, LI X J, et al. Characterization and photocatalytic properties of SnO2-TiO2 nanocomposites prepared through gaseous detonation method [J]. Ceramics International, 2017, 43(1): 1517–1521. doi: 10.1016/j.ceramint.2016.10.124 [14] ZHAO T J, LI X J, YAN H H. Metal catalyzed preparation of carbon nanomaterials by hydrogen-oxygen detonation method [J]. Combustion and Flame, 2018, 196: 108–115. doi: 10.1016/j.combustflame.2018.06.011 [15] NEPAL A, SINGH G P, FLANDERS B N, et al. One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation [J]. Nanotechnology, 2013, 24(24): 245602. doi: 10.1088/0957-4484/24/24/245602 [16] HE C, YAN H H, LI X J, et al. In situ fabrication of carbon dots-based lubricants using a facile ultrasonic approach [J]. Green Chemistry, 2019, 21(9): 2279–2285. doi: 10.1039/C8GC04021D [17] 陈天梧, 罗宁, 闫鸿浩, 等. 气相爆炸流场中TiO2纳米颗粒生长的数值分析初探 [J]. 高压物理学报, 2014, 28(6): 729–735.CHEN T W, LUO N, YAN H H, et al. Numerical analysis of the formation of TiO2 nanoparticles in gas phase explosion flow field [J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 729–735. [18] LUO N, JING H, MA Z, et al. Growth characteristics of spherical titanium oxide nanoparticles during the rapid gaseous detonation reaction [J]. Particuology, 2016, 26: 102–107. doi: 10.1016/j.partic.2015.11.002 [19] 闫鸿浩, 吴林松, 李晓杰, 等. 颗粒长大模型在气相爆轰合成纳米材料中的应用 [J]. 稀有金属材料与工程, 2015, 44(5): 1144–1148.YAN H H, WU L S, LI X J, et al. Application of particles growth model in gaseous detonation of SnO2 nanoparticles [J]. Rare Metal Materials and Engineering, 2015, 44(5): 1144–1148. [20] LUO N, SHEN H, JING H, et al. Numerical simulation of oxide nanoparticle growth characteristics under the gas detonation chemical reaction by space-time conservation element-solution element method [J]. Particuology, 2017, 35: 78–83. doi: 10.1016/j.partic.2017.01.006 [21] ZHAO T J, LI X J, WANG Y, et al. Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method [J]. Materials Research Bulletin, 2018, 102: 153–159. doi: 10.1016/j.materresbull.2018.02.033 [22] ZHAO T J, WANG X H, LI X J, et al. Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials [J]. Materials Letters, 2019, 236: 179–182. doi: 10.1016/j.matlet.2018.10.105 [23] YAN H H, HUANG X C, XI S X. Using ethanol for preparation of nanosized TiO2 by gaseous detonation [J]. Combustion Explosion and Shock Waves, 2014, 50(2): 192–195. doi: 10.1134/S0010508214020105 [24] YAN H H, WU L S, LI X J, et al. Optimal design and preparation of nano-TiO2 photocatalyst using gaseous detonation method [J]. Journal of Nanoscience and Nanotechnology, 2017, 17(3): 2124–2129. doi: 10.1166/jnn.2017.12688 [25] 闫鸿浩, 吴林松, 李晓杰, 等. 爆温对气相爆轰合成纳米TiO2结构和性能的影响 [J]. 无机材料学报, 2017, 32(3): 275–280. doi: 10.15541/jim20160315YAN H H, WU L S, LI X J, et al. Influence of explosion temperature on structure and property of nano-TiO2 prepared by gaseous detonation method [J]. Journal of Inorganic Materials, 2017, 32(3): 275–280. doi: 10.15541/jim20160315 [26] SPURR R A, MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer [J]. Analytical Chemistry, 1957, 29(5): 760–762. doi: 10.1021/ac60125a006 [27] YAN H H, ZHAO T J, LI X J, et al. Slurry explosive detonation synthesis and characterization of 10 nm TiO2 [J]. Ceramics International, 2016, 42(13): 14862–14866. doi: 10.1016/j.ceramint.2016.06.122 [28] ZHAO T J, YAN H H, LI X J, et al. Phase transition rate of anatase during detonation synthesis of TiO2 [J]. Phase Transitions, 2017, 90(6): 618–627. doi: 10.1080/01411594.2016.1252981