陶瓷球金属复合结构的抗弹性能和梯度设计

陈铭 张永亮 郑航 赵凯 郑志军

陈铭, 张永亮, 郑航, 赵凯, 郑志军. 陶瓷球金属复合结构的抗弹性能和梯度设计[J]. 高压物理学报, 2021, 35(5): 054201. doi: 10.11858/gywlxb.20210739
引用本文: 陈铭, 张永亮, 郑航, 赵凯, 郑志军. 陶瓷球金属复合结构的抗弹性能和梯度设计[J]. 高压物理学报, 2021, 35(5): 054201. doi: 10.11858/gywlxb.20210739
CHEN Ming, ZHANG Yongliang, ZHENG Hang, ZHAO Kai, ZHENG Zhijun. Ballistic Performance Analysis and Gradient Optimization Design of Ceramic Ball and Metal Composite Armor[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054201. doi: 10.11858/gywlxb.20210739
Citation: CHEN Ming, ZHANG Yongliang, ZHENG Hang, ZHAO Kai, ZHENG Zhijun. Ballistic Performance Analysis and Gradient Optimization Design of Ceramic Ball and Metal Composite Armor[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054201. doi: 10.11858/gywlxb.20210739

陶瓷球金属复合结构的抗弹性能和梯度设计

doi: 10.11858/gywlxb.20210739
基金项目: 中央高校基本科研业务费专项资金(WK2090000019)
详细信息
    作者简介:

    陈 铭(1996-),男,硕士研究生,主要从事陶瓷装甲防护研究. E-mail:chenm182@mail.ustc.edu.cn

    通讯作者:

    张永亮(1987-),男,博士,副研究员,主要从事冲击动力学研究. E-mail:ylz2018@ustc.edu.cn

    郑志军(1979-),男,博士,副教授,主要从事冲击动力学研究. E-mail:zjzheng@ustc.edu.cn

  • 中图分类号: O385

Ballistic Performance Analysis and Gradient Optimization Design of Ceramic Ball and Metal Composite Armor

  • 摘要: 陶瓷是具有轻质高强特性的常用抗弹材料,但其本身的脆性特点使得陶瓷利用率较低,局部的击穿往往导致整块陶瓷破碎。为了提高陶瓷的利用率,提出了一种分层梯度陶瓷球金属复合结构,并通过数值模拟研究了陶瓷球尺寸及着弹点的影响。从子弹和靶板的变形、弹速变化和塑性波传播等角度分析了陶瓷球金属复合结构的抗弹机理,并对结构进行了梯度优化设计。研究结果表明,直径为7.2 mm的陶瓷球结构的综合抗弹性能良好,在此基础上设计的梯度陶瓷球结构能进一步提升抗弹性。陶瓷球金属复合靶板呈局部破坏,靶板其他位置仍具有抗打击能力。

     

  • 图  弹体侵彻模型(单位:mm)[7]

    Figure  1.  Projectile penetration model (Unit: mm)[7]

    图  密排堆积结构的力传递特点

    Figure  2.  Force transmission characteristics of a close-packed structure

    图  不同尺寸陶瓷球的均布结构

    Figure  3.  Uniform distribution structures of ceramic balls with different sizes

    图  梯度陶瓷球结构

    Figure  4.  Graded distribution structures of ceramic balls

    图  (a) 弹体侵彻模型和(b) 12.7mm穿燃弹侵彻陶瓷/铝半无限靶损伤演化过程

    Figure  5.  (a) Projectile penetration model and (b) damage evolution of a 12.7 mm armor-piercing explosive incendiary bullet penetrating into a semi-finite ceramic/aluminum composite target

    图  不同着弹点示意图

    Figure  6.  Schematic of different penetration locations

    图  弹体侵彻过程中的速度历史曲线

    Figure  7.  Velocity histories during projectile penetration

    图  弹体在位置1处侵彻时各类复合靶板的变形过程

    Figure  8.  Deformation processes of various composite target plates at Position 1

    图  弹体侵彻结构A时不同位置的速度历史曲线

    Figure  9.  Velocity histories during the bullet penetrating into structure A at different hitting positions

    图  10  弹体在位置3处侵彻时结构A的变形过程

    Figure  10.  Deformation process during the bullet penetrating into structure A at Position 3

    图  11  弹体侵彻位置3处各类结构的侵深

    Figure  11.  Penetration depth of various structures at Position 3

    图  12  弹体侵彻梯度结构的速度历史曲线

    Figure  12.  Bullet velocity histories for the gradient structures

    图  13  各类梯度陶瓷球结构的侵彻变形

    Figure  13.  Deformation of various gradient ceramic ball structures under impact

    图  14  梯度G结构的塑性区域变化

    Figure  14.  Variations of plastic region of gradient structure G

    图  15  不同着弹点结构B与结构G的侵深

    Figure  15.  Penetration depth of structure B and structure G at different positions

    表  1  碳化硼陶瓷的JH-2模型参数[10]

    Table  1.   Parameters in JH-2 model for boron carbide ceramics[10]

    $\;\rho $/(kg·m−3)G/GPaabcmnσHEL/GPad1d2K1K2K3
    25101970.9270.70.0050.850.67190.0010.5233−5932800
    下载: 导出CSV

    表  2  金属的Johnson-Cook模型参数[12-14]

    Table  2.   Parameters in the Johnson-Cook model for metal[12-14]

    Material$\;\rho $/(kg·m−3)G/GPaA/MPaB/MPaNCMTm/K Cp/(J·kg−1·K−1)
    Steel (bullet)785077.515404770.16011793470
    Aluminum2780283304450.7301.7775 880
    MaterialD1D2D3D4D5C2a2S1
    Steel (bullet)1.5000045690.461.33
    Aluminum0.1120.1231.50.007031730.461.49
    下载: 导出CSV

    表  3  不同着弹点下各类复合靶板的侵彻结果

    Table  3.   Penetration results of various composite target plates at different penetration positions

    StructurePenetration results
    Position 1Position 2Position 3
    ANonpenetrating
    Penetration depth: 14.6 mm
    Penetrating
    Residual velocity: 28.0 m/s
    Penetrating
    Residual velocity: 105.0 m/s
    BNonpenetrating
    Penetration depth: 15.6 mm
    Nonpenetrating
    Penetration depth: 17.7 mm
    Nonpenetrating
    Penetration depth: 22.9 mm
    CNonpenetrating
    Penetration depth: 19.4 mm
    Nonpenetrating
    Penetration depth: 20.4 mm
    Penetrating
    Residual velocity: 71.0 m/s
    DNonpenetrating
    Penetration depth: 23.1 mm
    Penetrating
    Residual velocity: 37.0 m/s
    Penetrating
    Residual velocity: 111.0 m/s
    下载: 导出CSV
  • [1] MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure (Part 2) [J]. Ceramics International, 2010, 36(7): 2117–2127. doi: 10.1016/j.ceramint.2010.05.022
    [2] GOOCH W A. An overview of ceramic armor applications [C]//International Conference on Advanced Ceramics and Glasses PAC RIM Ⅳ. Maui, Hawaii, 2002.
    [3] 刘永强, 王进华, 吕娟, 等. 陶瓷球尺寸对金属基陶瓷球复合材料抗弹性能影响研究 [J]. 兵器材料科学与工程, 2018, 41(2): 80–84. doi: 10.14024/j.cnki.1004-244x.20180307.001

    LIU Y Q, WANG J H, LÜ J, et al. Influence of ceramic ball size on ballistic performance of metal matrix ceramic ball composite [J]. Ordnance Material Science and Engineering, 2018, 41(2): 80–84. doi: 10.14024/j.cnki.1004-244x.20180307.001
    [4] 陈兴, 杨城笑, 严彪. 金属基陶瓷颗粒增强复合材料的制备方法 [J]. 上海有色金属, 2008, 29(1): 27–31. doi: 10.13258/j.cnki.snm.2008.01.002

    CHEN X, YANG C X, YAN B. Preparation of composite reinforced with metal matrix ceramic particles [J]. Nonferrous Metal Materials and Engineering, 2008, 29(1): 27–31. doi: 10.13258/j.cnki.snm.2008.01.002
    [5] LIU J, WU C Q, LI J, et al. Ceramic balls protected ultra-high performance concrete structure against projectile impact: a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 143–162. doi: 10.1016/j.ijimpeng.2018.11.006
    [6] SHAO R, WU C, SU Y, et al. Experimental and numerical investigations of penetration resistance of ultra-high strength concrete protected with ceramic balls subjected to projectile impact [J]. Ceramics International, 2019, 36(4): 588–596. doi: 10.1016/j.ceramint.2019.01.110
    [7] 满蓬. 氧化铝基陶瓷复合装甲面板与背板的配置效应研究 [D]. 南京: 南京理工大学, 2012: 27−28.

    MAN P. Study on the effect of configuration on front plate and back plate of ceramic composite armor based on Al2O3 [D]. Nanjing: Nanjing University of Science & Technology, 2012: 27−28.
    [8] 李聪. 刚玉球/铝合金复合材料的制备及其抗弹性能研究 [D]. 南京: 南京航空航天大学, 2008: 51−53.

    LI C. Studies on fabrication process and ballistic-resistance of corundum balls/aluminum alloy composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 51−53.
    [9] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. doi: 10.1063/1.46199
    [10] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA [C]//4th European LS-DYNA Users Conference. Ulm, Germany, 2003: 47−60.
    [11] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [12] 侯二永. 陶瓷间隙靶抗12.7 mm穿甲燃烧弹机理及性能研究 [D]. 长沙: 国防科学技术大学, 2008: 13−17.

    HOU E Y. Investigation of mechanism and performance of spaced ceramic target under impact of 12.7 mm armor piercing projectile [D]. Changsha: National University of Defense Technology, 2008: 13−17.
    [13] 曹杰, 葛建立, 王浩, 等. 蜂窝铝冲击波形数值计算及分析 [J]. 弹道学报, 2017, 29(4): 58–63. doi: CNKI:SUN:DDXB.0.2017-04-011

    CAO J, GE J L, WANG H, et al. Numerical simulation on shock waveform of aluminum honeycombs [J]. Journal of Ballistics, 2017, 29(4): 58–63. doi: CNKI:SUN:DDXB.0.2017-04-011
    [14] 包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 57–68. doi: CNKI:SUN:BZCJ.0.2019-12-006

    BAO K, ZHANG X F, TAN M T, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet [J]. Explosion and Shock Waves, 2019, 39(12): 57–68. doi: CNKI:SUN:BZCJ.0.2019-12-006
    [15] HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems [J]. Ceramics International, 2017, 43(13): 10368–10376. doi: 10.1016/j.ceramint.2017.05.071
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  2509
  • HTML全文浏览量:  852
  • PDF下载量:  62
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-03-23

目录

    /

    返回文章
    返回