不同W含量Al/W活性材料的冲击压缩特性

宋超慧 任会兰 李尉 郝莉

宋超慧, 任会兰, 李尉, 郝莉. 不同W含量Al/W活性材料的冲击压缩特性[J]. 高压物理学报, 2021, 35(6): 064106. doi: 10.11858/gywlxb.20210738
引用本文: 宋超慧, 任会兰, 李尉, 郝莉. 不同W含量Al/W活性材料的冲击压缩特性[J]. 高压物理学报, 2021, 35(6): 064106. doi: 10.11858/gywlxb.20210738
SONG Chaohui, REN Huilan, LI Wei, HAO Li. Impact Compression Characteristics of Al/W Active Materials with Different W Additions[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064106. doi: 10.11858/gywlxb.20210738
Citation: SONG Chaohui, REN Huilan, LI Wei, HAO Li. Impact Compression Characteristics of Al/W Active Materials with Different W Additions[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064106. doi: 10.11858/gywlxb.20210738

不同W含量Al/W活性材料的冲击压缩特性

doi: 10.11858/gywlxb.20210738
基金项目: 国家自然科学基金(11872124)
详细信息
    作者简介:

    宋超慧(1996-),男,硕士研究生,主要从事材料动力学性能研究. E-mail:chaohuisong@bit.edu.cn

    通讯作者:

    任会兰(1973-),女,教授,主要从事多孔材料动力学行为研究. E-mail:huilanren@bit.edu.cn

  • 中图分类号: O347.3; TB333

Impact Compression Characteristics of Al/W Active Materials with Different W Additions

  • 摘要: 采用模压烧结工艺制备不同W含量的Al/W活性材料,基于分离式霍普金森压杆(SHPB)技术,采用紫铜片和橡胶片进行波形整形,研究不同配比Al/W材料的动态压缩和破坏特性。实验结果表明:随着W含量增多,Al/W材料内部的孔洞、微裂纹逐渐增多;W含量不同,Al/W材料的动态压缩变形和破坏特性呈现明显的差异;W的质量分数为44%和64%时,不同应变率下Al/W的应力-应变曲线呈现出弹性-塑性强化的变形特点,破坏应变随应变率增加而增大; W的质量分数为83%的Al/W材料则表现为塑性阶段的应变软化特点;当W的质量分数达到91%时,Al/W材料达到破坏强度后便迅速失效,破坏应变保持在0.03左右。W含量增加时,Al/W变形模式的转化是增强相W和材料内缺陷相互竞争的结果。

     

  • 图  Al/W试样

    Figure  1.  Al/W samples

    图  Al/W活性材料的微观形貌

    Figure  2.  Micrographs of Al/W materials with different W additions

    图  SHPB系统

    Figure  3.  SHPB system

    图  不同整形器产生的入射波

    Figure  4.  Incident waves generated by different pulse shapers

    图  紫铜整形器对不同配比的Al/W试件应力均匀性和加载应变率的影响

    Figure  5.  Effect of copper pulse shapers on the stress uniformity and loading strain rate of specimens with different Al/W ratios

    图  使用橡胶整形器的SHPB实验结果

    Figure  6.  SHPB experiment results using rubber pulse shaper

    图  Al/W材料的动态真应力-真应变曲线

    Figure  7.  Dynamic true stress-true strain curves of Al/W materials

    图  SHPB实验后 Al/W 试件的破坏情况

    Figure  8.  Deformation of Al/W specimens after SHPB tests

    图  不同应变率下Al/W压缩的真应力-应变曲线

    Figure  9.  Al/W dynamic true stress-strain curves under different strain rates

    表  1  Al/W试件相关参数

    Table  1.   Al/W specimen parameters

    Test No.Specimen codeMass fraction of W/%Density/(kg·m−3)Volume porosity/%
    1AW-4444374014.5
    2AW-6464495018.1
    3AW-8383686027.7
    4AW-9191837032.9
    下载: 导出CSV

    表  2  不同配比Al/W试件的动态压缩力学性能

    Table  2.   Dynamic compression mechanical properties of Al/W with different W additions

    MaterialStrain rate/s−1Dynamic compression yield strength/MPa
    AW-441745137.2
    AW-641716168.2
    AW-831715187.4
    AW-911770157.7 (failure strength)
    下载: 导出CSV
  • [1] National Research Council, Committee on Advanced Energetic Materials and Manufacturing Technologies. Advanced energetic materials [M]. Washington: The National Academies Press, 2004: 20–23.
    [2] DUNBAR E, THADHANI N N, GRAHAM R A. High-pressure shock activation and mixing of nickel-aluminium powder mixtures [J]. Journal of Materials Science, 1993, 28(11): 2903–2914. doi: 10.1007/BF00354693
    [3] OLNEY K L, CHIU P H, LEE C W, et al. Role of material properties and mesostructure on dynamic deformation and shear instability in Al-W granular composites [J]. Journal of Applied Physics, 2011, 110(11): 114908. doi: 10.1063/1.3665644
    [4] CHIU P H, NESTERENKO V F. Dynamic behavior and fracture of granular composite Al-W [C]//DYMAT 2009-9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, 2009: 947–953.
    [5] GUO L F, ZHANG Z M, LI B C, et al. Modeling the constitutive relationship of powder metallurgy Al-W alloy at elevated temperature [J]. Materials & Design, 2014, 64: 667–674. doi: 10.1016/j.matdes.2014.08.031
    [6] HUNT E M, PANTOYA M L. Impact sensitivity of intermetallic nanocomposites: a study on compositional and bulk density [J]. Intermetallics, 2010, 18(8): 1612–1616. doi: 10.1016/j.intermet.2010.04.015
    [7] TUCKER M D. Characterization of impact initiation of aluminum-based intermetallic-forming reactive materials [R]. Atlanta Botanical: Georgia Institute of Technology, 2011.
    [8] SHEMIRANI A B, NAGHDABADI R, ASHRAFI M J. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus [J]. Construction and Building Materials, 2016, 125: 326–336. doi: 10.1016/j.conbuildmat.2016.08.045
    [9] 王扬卫, 于晓东, 王璀轶, 等. 准脆性SiCp/Al复合材料SHPB实验中入射波整形技术 [J]. 北京理工大学学报, 2010, 30(4): 488–491. doi: 10.15918/j.tbit1001-0645.2010.04.004

    WANG Y W, YU X D, WANG C Y, et al. Incidence pulse shaping techniques for testing quasi-Brittle SiCp/Al composites with SHPB [J]. Transactions of Beijing Institute of Technology, 2010, 30(4): 488–491. doi: 10.15918/j.tbit1001-0645.2010.04.004
    [10] SONG Z H, WANG Z H, KIM H, et al. Pulse shaper and dynamic compressive property investigation on ice using a large-sized modified split Hopkinson pressure bar [J]. Latin American Journal of Solids and Structures, 2016, 13(3): 391–406. doi: 10.1590/1679-78252458
    [11] YANG H, SONG H W, ZHANG S. Experimental investigation of the behavior of aramid fiber reinforced polymer confined concrete subjected to high strain-rate compression [J]. Construction and Building Materials, 2015, 95: 143–151. doi: 10.1016/j.conbuildmat.2015.07.084
    [12] CHEN X D, WU S X, ZHOU J K. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete [J]. Construction and Building Materials, 2013, 47: 419–430. doi: 10.1016/j.conbuildmat.2013.05.063
    [13] FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93–106. doi: 10.1007/BF02411056
    [14] 赵习金, 卢芳云, 王悟, 等. 入射波整形技术的实验和理论研究 [J]. 高压物理学报, 2004, 18(3): 231–236. doi: 10.11858/gywlxb.2004.03.007

    ZHAO X J, LU F Y, WANG W, et al. The experimental and theoretical study on the incident pulse shaping technique [J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 231–236. doi: 10.11858/gywlxb.2004.03.007
    [15] ELLWOOD S, GRIFFITHS L J, PARRY D J. Materials testing at high constant strain rates [J]. Journal of Physics E: Scientific Instruments, 1982, 15(3): 280–282. doi: 10.1088/0022-3735/15/3/009
    [16] 陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究 [J]. 爆炸与冲击, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006

    TAO J L, TIAN C J, CHEN Y Z, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB [J]. Explosion and Shock Waves, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006
    [17] 刘晓俊, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究 [J]. 材料工程, 2017, 45(4): 77–83. doi: 10.11868/j.issn.1001-4381.2016.001212

    LIU X J, REN H L, NING J G. Experimental study on impact response of W/Zr reactive materials with different proportions [J]. Journal of Materials Engineering, 2017, 45(4): 77–83. doi: 10.11868/j.issn.1001-4381.2016.001212
    [18] LU Y B, LI Q M. Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials [J]. International Journal of Protective Structures, 2010, 1(3): 363–390. doi: 10.1260/2041-4196.1.3.363
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  738
  • HTML全文浏览量:  434
  • PDF下载量:  33
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-04-02

目录

    /

    返回文章
    返回