Numerical Simulation on Dynamic Responses of Hull Girder Subjected to Underwater Explosion
-
摘要: 为研究水下非接触爆炸作用下船体梁的总体损伤特性,建立了炸药在船体梁中部正下方爆炸模型,应用船体梁总体响应数值计算方法,并结合缩比船体梁模型,试验验证了该方法的有效性,从损伤模式、频率响应等方面研究了船体梁的总体响应特性。结果表明:该数值方法较好地模拟了第一次气泡脉动阶段内梁的响应周期和幅值;在气泡脉动频率接近船体梁一阶湿频率时,随着爆径比减小,船体梁的总体响应模式由鞭状运动逐渐向中垂损伤转变。Abstract: In order to study the overall damage characteristics of hull girder subjected to non-contact underwater explosion, a numerical method was established in which an explosive charge was located at the mid-span of the hull girder. The effectiveness of this method was verified by the model test. The damage mode and frequency response were studied to analyze the overall response of the hull girder. Results showed that the numerical method can simulate the response period and amplitude of the hull girder during the first bubble pulsation phase. When the bubble pulsation frequency approximated the first wet frequency of the hull girder, the response mode of girder will transform from whipping motion to sagging with the decrease of the ratio of stand-off to maximum bubble radius.
-
Key words:
- underwater explosions /
- hull girder /
- dynamic response /
- numerical simulation
-
表 2 工况相关计算参数
Table 2. Calculation parameters of working conditions
No. W/g R/m R/r T/ms 1 5 1.00 3.79 47 2 5 0.70 2.63 48 3 5 0.55 2.05 49 4 5 0.50 1.86 49 5 5 0.40 1.49 50 6 5 0.30 1.05 50 7 30 0.50 1.04 89 8 5 0.20 0.74 51 表 3 湿频率的比较
Table 3. Comparison of wet frequencies
Method f1/Hz f2/Hz Acoustic structure coupling method 19.6 Attached water quality method 22.1 37.3 表 4 不同工况下船体梁的变形情况
Table 4. Final deformation of hull girder in various cases
No. R/r fb/fB sh/cm ss/cm sh2/cm Dynamic responses 1 3.79 1.15 0.74 0.89 1.54 Whipping motion 2 2.63 1.13 0.84 2.62 2.04 Whipping motion 3 2.05 1.13 0.79 2.67 2.87 Mild sagging 4 1.86 1.11 0.90 3.16 2.32 Mild sagging 5 1.49 1.09 1.26 5.49 0.59 Sagging 6 1.05 1.09 0.89 6.88 1.49 Sagging 7 1.04 0.61 6.63 18.90 4.60 Hogging 8 0.74 1.00 0.84 2.69 2.04 Sagging -
[1] 李玉节, 潘建强, 李国华, 等. 水下爆炸气泡诱发舰船鞭状效应的实验研究 [J]. 船舶力学, 2001, 5(6): 75–83. doi: 10.3969/j.issn.1007-7294.2001.06.009LI Y J, PAN J Q, LI G H, et al. Experimental study of ship whipping induced by underwater explosive bubble [J]. Journal of Ship Mechanics, 2001, 5(6): 75–83. doi: 10.3969/j.issn.1007-7294.2001.06.009 [2] SHIN Y S. Ship shock modeling and simulation for far-field underwater explosion [J]. Computers & Structures, 2004, 82(23/24/25/26): 2211–2219. doi: 10.1016/j.compstruc.2004.03.075 [3] ZONG Z. A hydroplastic analysis of a free–free beam floating on water subjected to an underwater bubble [J]. Journal of Fluids and Structures, 2005, 20(3): 359–372. doi: 10.1016/j.jfluidstructs.2004.08.003 [4] 孙远翔, 田俊宏, 张之凡, 等. 含铝炸药近场水下爆炸冲击波的实验及数值模拟 [J]. 振动与冲击, 2020, 39(14): 171–178,193. doi: 10.13465/j.cnki.jvs.2020.14.025SUN Y X, TIAN J H, ZHANG Z F, et al. Experiment and numerical simulation study on the near-field underwater explosion of aluminized explosive [J]. Journal of Vibration and Shock, 2020, 39(14): 171–178,193. doi: 10.13465/j.cnki.jvs.2020.14.025 [5] CHEN Y Y, YAO X L, CUI X W, et al. Study on the quantitative law of wall pressure caused by mini-charge underwater explosion bubble [J]. Ocean Engineering, 2020, 213: 107552. doi: 10.1016/j.oceaneng.2020.107552 [6] 刁爱民, 李海涛. 水下爆炸作用下船体梁整体运动简化理论模型 [J]. 华中科技大学学报(自然科学版), 2016, 44(6): 63–67. doi: 10.13245/j.hust.160612DIAO A M, LI H T. Simplified theoretical model for bulk movement of hull girder subjected to underwater explosion [J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2016, 44(6): 63–67. doi: 10.13245/j.hust.160612 [7] WANG H, CHENG Y S, LIU J, et al. Damage evaluation of a simplified hull girder subjected to underwater explosion load: a semi-analytical model [J]. Marine Structures, 2016, 45: 43–62. doi: 10.1016/j.marstruc.2015.10.005 [8] GAUCH E, LEBLANC J, SHUKLA A. Near field underwater explosion response of polyurea coated composite cylinders [J]. Composite Structures, 2018, 202: 836–852. doi: 10.1016/j.compstruct.2018.04.048 [9] WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse [J]. Marine Structures, 2014, 39: 90–117. doi: 10.1016/j.marstruc.2014.07.003 [10] ZHANG A M, REN S F, LI Q, et al. 3D numerical simulation on fluid-structure interaction of structure subjected to underwater explosion with cavitation [J]. Applied Mathematics and Mechanics, 2012, 33(9): 1191–1206. doi: 10.1007/s10483-012-1615-8 [11] 李海涛, 朱石坚, 刁爱民, 等. 水下爆炸气泡作用下梁中垂损伤及流场变化特性 [J]. 高压物理学报, 2012, 26(5): 494–500. doi: 10.11858/gywlxb.2012.05.003LI H T, ZHU S J, DIAO A M, et al. Characteristics of flow-field and sagging damage of free-free beam subjected to underwater explosion bubbles [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 494–500. doi: 10.11858/gywlxb.2012.05.003 [12] 王龙侃, 张之凡, 郎济才, 等. 基于LS-DGF-DG方法的船体板架结构近场水下爆炸毁伤特性研究 [J]. 振动与冲击, 2016, 35(16): 64–71. doi: 10.13465/j.cnki.jvs.2016.16.012WANG L K, ZHANG Z F, LANG J C, et al. Damage characteristics of hull grillage subjected to near-field underwater explosion based on an LS-DGF-DG method [J]. Journal of Vibration and Shock, 2016, 35(16): 64–71. doi: 10.13465/j.cnki.jvs.2016.16.012 [13] 黄晓明, 朱锡, 牟金磊, 等. 整体结构模型低阶湿模态仿真计算方法 [J]. 舰船科学技术, 2011, 33(5): 9–12. doi: 10.3404/j.issn.1672-7649.2011.05.003HUANG X M, ZHU X, MU J L, et al. Simulation and experimental investigation on transverse lower order wet mode of whole structure model [J]. Ship Science and Technology, 2011, 33(5): 9–12. doi: 10.3404/j.issn.1672-7649.2011.05.003 [14] 姚熊亮, 张阿漫, 许维军. 声固耦合方法在舰船水下爆炸中的应用 [J]. 哈尔滨工程大学学报, 2005, 26(6): 707–712. doi: 10.3969/j.issn.1006-7043.2005.06.003YAO X L, ZHANG A M, XU W J. Application of coupled acoustic-structural analysis to warship underwater explosion [J]. Journal of Harbin Engineering University, 2005, 26(6): 707–712. doi: 10.3969/j.issn.1006-7043.2005.06.003 [15] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. doi: 10.1121/1.1458590 [16] 胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192. doi: 10.3321/j.issn:1001-1455.2003.02.017HU C M, HE H L, HU S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192. doi: 10.3321/j.issn:1001-1455.2003.02.017 [17] 陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. doi: 10.11883/1001-1455(2007)02-0131-05CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. doi: 10.11883/1001-1455(2007)02-0131-05 [18] 朱锡, 牟金磊, 洪江波, 等. 水下爆炸气泡脉动特性的试验研究 [J]. 哈尔滨工程大学学报, 2007, 28(4): 365–368. doi: 10.3969/j.issn.1006-7043.2007.04.001ZHU X, MU J L, HONG J B, et al. Experimental study of characters of bubble impulsion induced by underwater explosions [J]. Journal of Harbin Engineering University, 2007, 28(4): 365–368. doi: 10.3969/j.issn.1006-7043.2007.04.001