静、动态压缩下环氧树脂玻璃钢的力学行为和特性

张羲黄 李金柱 武海军 黄风雷

张羲黄, 李金柱, 武海军, 黄风雷. 静、动态压缩下环氧树脂玻璃钢的力学行为和特性[J]. 高压物理学报, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734
引用本文: 张羲黄, 李金柱, 武海军, 黄风雷. 静、动态压缩下环氧树脂玻璃钢的力学行为和特性[J]. 高压物理学报, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734
ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734
Citation: ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734

静、动态压缩下环氧树脂玻璃钢的力学行为和特性

doi: 10.11858/gywlxb.20210734
基金项目: 国家自然科学基金(11472052)
详细信息
    作者简介:

    张羲黄(1995-),男,硕士,主要从事材料与结构冲击动力学研究. E-mail:xihuangzhang@outlook.com

    通讯作者:

    李金柱(1972-),男,博士,副教授,主要从事爆炸与冲击动力学研究. E-mail:lijinzhu@bit.edu.cn

  • 中图分类号: O347.3

Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading

  • 摘要: 为研究环氧树脂玻璃钢在静、动态载荷作用下的力学性能,采用材料测试系统(MTS)和分离式霍普金森压杆(Split Hopkinson pressure bar,SHPB)对材料进行面内和面外方向的压缩实验,获得了不同应变率下材料的应力-应变曲线及相关力学参数。通过扫描电子显微镜(SEM)观察材料的微观破坏形貌,分析了材料的失效机理。静、动态压缩实验结果表明:环氧树脂玻璃钢具有明显的应变率敏感性以及各向异性;分层损伤是材料受面内加载发生破坏的原因,两个加载方向下材料均会产生层间贯穿的剪切裂纹。断口微观观测分析显示:动态载荷作用下,被拔出的纤维表面附着大量树脂基体,表明纤维-基体界面的作用力增强可能是导致环氧树脂玻璃钢动、静态力学响应差异的原因之一。针对材料的动态力学响应特性,建立了考虑应变率效应的非线性动态损伤模型。通过对比实验数据与拟合结果发现,该模型可以较好地描述环氧树脂玻璃钢在高应变率下的力学行为和特性。

     

  • 图  环氧树脂玻璃钢试样

    Figure  1.  Specimens of glass fiber reinforced plastics

    图  试样加载方向示意图

    Figure  2.  Schematic diagram of loading direction of specimen

    图  SHPB试验系统示意图

    Figure  3.  Schematic of compression SHPB set-up

    图  面内压缩实验结果

    Figure  4.  Experimental results of specimens under in-plane compressive loading

    图  面外压缩实验结果

    Figure  5.  Experimental results of specimens under out-of-plane compressive loading

    图  应变率1145 s−1,面内加载下试样的损伤过程

    Figure  6.  Process of specimen failures under in-plane compressive loading, strain rate: 1145 s−1

    图  应变率1154 s−1,面外加载下试样的损伤过程

    Figure  7.  Process of specimen failures under out-of-plane compressive loading, strain rate: 1154 s−1

    图  面内加载下试样的SEM图像

    Figure  8.  SEM observations of specimens subjected to in-plane compressive loading

    图  面外加载下试样的SEM图像

    Figure  9.  SEM observations of specimens subjected to out-of-plane compressive loading

    图  10  面内和面外压缩下环氧树脂玻璃钢的压缩强度及失效应变对比

    Figure  10.  Comparison of compressive strength andfailure strain of glass fiber reinforced plasticsunder in-plane and out-of-plane loading

    图  11  面内加载下模型的模拟计算与实验得到的应力-应变曲线对比

    Figure  11.  Comparison of stress-strain curves between model predictions and experiments under in-plane loading

    图  12  面外加载下模型的模拟计算与实验得到的应力-应变曲线对比

    Figure  12.  Comparison of stress-strain curves between model predictions and experiments under out-of-plane loading

    表  1  不同应变率面内加载下环氧树脂玻璃钢的相关力学参数

    Table  1.   Mechanical properties of glass fiber reinforced plastics subjected to in-plane loading at various strain rates

    $\dot{\varepsilon} $/s−1E/GPa$\sigma $y/MPa$\sigma $c/MPa$\varepsilon $f
    0.00110.3408.20.040
    24685.2236.2
    35688.7262.5476.20.021
    64591.2316.7575.50.026
    91896.4475.3658.40.024
    114598.1471.0665.90.025
    下载: 导出CSV

    表  2  不同应变率面外加载下环氧树脂玻璃钢的相关力学参数

    Table  2.   Mechanical properties of glass fiber reinforced plastics subjected to out-of-plane loading at various strain rates

    $\dot{\varepsilon} $/s−1E/GPa$\sigma $y/MPa$\sigma $c/MPa$\varepsilon $f
    0.001 6.1584.40.091
    61238.7212.6
    83052.6325.1681.90.060
    103554.7332.4775.60.067
    115454.9347.6771.20.068
    134652.1371.8766.80.070
    下载: 导出CSV

    表  3  环氧树脂玻璃钢本构模型拟合参数

    Table  3.   Material constants of glass fiber reinforced plastics constitutive model

    Loading directionD1D0$\xi $BAmn
    In-plane loading10.200.0180.861.2063201.350.32
    Out-of-plane loading 8.530.0060.970.9773082.560.14
    下载: 导出CSV
  • [1] TAN H C, HUANG X, LIU L L, et al. Dynamic compressive behavior of four-step three-dimensional braided composites along three directions [J]. International Journal of Impact Engineering, 2019, 134: 103366. doi: 10.1016/j.ijimpeng.2019.103366
    [2] 朱文墨, 李刚, 杨小平, 等. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素 [J]. 复合材料学报, 2020, 37(1): 1–15. doi: 10.13801/j.cnki.fhclxb.20190917.004

    ZHU W M, LI G, YANG X P, et al. Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites [J]. Acta Materiae Compositae Sinica, 2020, 37(1): 1–15. doi: 10.13801/j.cnki.fhclxb.20190917.004
    [3] GRIFFITHS L J, MARTIN D J. A study of the dynamic behaviour of a carbon-fibre composite using the split Hopkinson pressure bar [J]. Journal of Physics D: Applied Physics, 1974, 7(17): 2329–2341. doi: 10.1088/0022-3727/7/17/308
    [4] TAY T E, ANG H G, SHIM V P W. An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy [J]. Composite Structures, 1995, 33(4): 201–210. doi: 10.1016/0263-8223(95)00116-6
    [5] NAIK N K, KAVALA V R. High strain rate behavior of woven fabric composites under compressive loading [J]. Materials Science and Engineering: A, 2008, 474(1/2): 301–311. doi: 10.1016/j.msea.2007.05.032
    [6] KOERBER H, CAMANHO P P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in longitudinal compression [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(5): 462–470. doi: 10.1016/j.compositesa.2011.01.002
    [7] PLOECKL M, KUHN P, GROSSER J, et al. A dynamic test methodology for analyzing the strain-rate effect on the longitudinal compressive behavior of fiber-reinforced composites [J]. Composite Structures, 2017, 180: 429–438. doi: 10.1016/j.compstruct.2017.08.048
    [8] HSIAO H M, DANIEL I M. Strain rate behavior of composite materials [J]. Composites Part B: Engineering, 1998, 29(5): 521–533. doi: 10.1016/S1359-8368(98)00008-0
    [9] TARFAOUI M, CHOUKRI S, NEME A. Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings [J]. Composites Science and Technology, 2008, 68(2): 477–485. doi: 10.1016/j.compscitech.2007.06.014
    [10] SONG B, CHEN W N, WEERASOORIYA T. Quasi-static and dynamic compressive behaviors of a S-2 glass/SC15 composite [J]. Journal of Composite Materials, 2003, 37(19): 1723–1743. doi: 10.1177/002199803035189
    [11] 许沭华, 王肖钧, 张刚明, 等. Kevlar纤维增强复合材料动态压缩力学性能实验研究 [J]. 实验力学, 2001, 16(1): 26–33. doi: 10.3969/j.issn.1001-4888.2001.01.005

    XU S H, WANG X J, ZHANG G M, et al. Experimental investigation on the dynamic compression properties of kevlar fiber-rainforced composite laminates [J]. Journal of Experimental Mechanics, 2001, 16(1): 26–33. doi: 10.3969/j.issn.1001-4888.2001.01.005
    [12] 沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究 [J]. 复合材料学报, 2012, 29(4): 157–162. doi: 10.13801/j.cnki.fhclxb.2012.04.026

    SHEN L Y, LI Y C, WANG Z H, et al. Experimental and theoretical research on the dynamic properties of 3D orthogonal woven E-glass fiber/epoxy composites [J]. Acta Materiae Compositae Sinica, 2012, 29(4): 157–162. doi: 10.13801/j.cnki.fhclxb.2012.04.026
    [13] HU J X, YIN S, YU T X, et al. Dynamic compressive behavior of woven flax-epoxy-laminated composites [J]. International Journal of Impact Engineering, 2018, 117: 63–74. doi: 10.1016/j.ijimpeng.2018.03.004
    [14] CHEN C Y, ZHANG C, LIU C L, et al. Rate-dependent tensile failure behavior of short fiber reinforced PEEK [J]. Composites Part B: Engineering, 2018, 136: 187–196. doi: 10.1016/j.compositesb.2017.10.031
    [15] 阮班超, 史同亚, 王永刚. E玻璃纤维增强环氧树脂基复合材料轴向拉伸力学性能的应变率效应 [J]. 复合材料学报, 2018, 35(10): 2715–2722. doi: 10.13801/j.cnki.fhclxb.20180209.007

    RUAN B C, SHI T Y, WANG Y G. Influence of strain rate on tensile mechanical behavior of E glass fiber reinforced epoxy resin composites [J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2715–2722. doi: 10.13801/j.cnki.fhclxb.20180209.007
    [16] FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression [J]. Composite Structures, 2015, 123: 312–324. doi: 10.1016/j.compstruct.2014.12.053
    [17] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论 [J]. 工程力学, 2017, 34(3): 36–46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG P, QIANG H L, YE L P. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36–46. doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [18] ARBAOUI J, TARFAOUI M, EL MALKI ALAOUI A. Mechanical behavior and damage kinetics of woven E-glass/vinylester laminate composites under high strain rate dynamic compressive loading: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2016, 87: 44–54. doi: 10.1016/j.ijimpeng.2015.06.026
    [19] MOSTAPHA T. Experimental investigation of dynamic compression and damage kinetics of glass/epoxy laminated composites under high strain rate compression [M]//ATTAF B. Advances in Composite Materials-Ecodesign and Analysis. Rijeka: IntechOpen, 2011.
    [20] 王严培, 姜启帆, 李玉龙. 基于Hopkinson杆试验技术的PA-GF50复合材料动态力学行为 [J]. 兵工学报, 2018, 39(1): 161–169. doi: 10.3969/j.issn.1000-1093.2018.01.018

    WANG Y P, JIANG Q F, LI Y L. Dynamic mechanical behaviors of a short-glass-fiber reinforced polyamide in Hopkinson bar test [J]. Acta Armamentarii, 2018, 39(1): 161–169. doi: 10.3969/j.issn.1000-1093.2018.01.018
    [21] NAIK N K, SHANKAR P J, KAVALA V R, et al. High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies [J]. Materials Science and Engineering: A, 2011, 528(3): 846–854. doi: 10.1016/j.msea.2010.10.099
    [22] REIS V L, OPELT C V, CÂNDIDO G M, et al. Effect of fiber orientation on the compressive response of plain weave carbon fiber/epoxy composites submitted to high strain rates [J]. Composite Structures, 2018, 203: 952–959. doi: 10.1016/j.compstruct.2018.06.016
    [23] RAVIKUMAR G, POTHNIS J R, JOSHI M, et al. Analytical and experimental studies on mechanical behavior of composites under high strain rate compressive loading [J]. Materials & Design, 2013, 44: 246–255. doi: 10.1016/j.matdes.2012.07.040
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  496
  • PDF下载量:  45
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-03-25

目录

    /

    返回文章
    返回