Progress on Atomic Simulations of Phase Transition of Iron under Dynamic Loading
-
摘要: 铁的
α ↔ε 相变是金属高压相变研究领域的经典范例,随着测试技术的进步,其相变机制与动力学研究不断深入,基于激光加载的原位X射线观察结合非平衡分子动力学模拟研究是解决该问题最有效的手段之一。为此,综述了铁在动态载荷下塑性与相变的原子模拟研究进展,综合分析了铁的高压势函数,平面应变加载下晶体的各向异性、冲击强度、应变率、应变梯度、各种初始晶体缺陷等对铁相变机制的影响,以及铁的相变与层裂,同时报道了铁在非平面加载下响应规律研究的最新进展,最后进行了归纳总结和展望。Abstract:α ↔ε transformation of iron is a prototype of high-pressure phase transition in metals. With the progress of detecting technology, mechanism and dynamics of the phase transition have being investigated in depth. Laser-driven in situ X-ray observation combined with non-equilibrium molecular dynamics simulation is one of the most effective approach to the issue. In present paper, the progress of atomic investigations on plasticity and phase transformation of iron under dynamic loading is reviewed. The effects of high-pressure interatomic potential of iron, crystal anisotropy, impact strength, strain rate, strain gradient and various initial crystal defects on phase transformation mechanism, phase transformation and spalling of iron are analyzed. Meanwhile, the latest progress of our researches on nonplanar-loading responses of iron is reported. Finally, the conclusion and prospect are given.-
Key words:
- high-pressure structural transition /
- plasticity /
- spall /
- molecular dynamics /
- interatomic potential /
- iron
-
随着水下爆炸在国防工业领域中的应用日益广泛,研究范围也从自由场中单气泡运动延伸到复杂边界条件下的气泡运动。根据文献[1]中的实验结果,当边界大于气泡最大半径(Rmax)的3倍以上时,边界影响将不明显。因此,本研究定义浅水中气泡运动的边界距离应当小于3倍气泡最大半径。当爆炸气泡在浅水中运动时,会同时受到自由面和水底壁面的作用而引起极其复杂的水面现象,气泡的运动特性与在自由场中或单一边界附近处爆炸相比会发生很大变化。在宏观尺度问题中,浅海海滩中爆炸可以产生向上高速喷射的水柱,军事上可以用来抵御贴水面飞行的物体的袭击,气泡坍塌形成的高速射流能够引起舰船结构的局部毁伤。在小尺度范围下,生物领域的激光诱导向前转移(LIFT)技术利用气泡射流将生物材料传递到接收板上。浅层水中爆炸由于受到自由液面和水底壁面的同时影响,产生了不同于无限水介质中爆炸的水面现象,可以说多界面大大增加了水下爆炸研究的困难程度。
对于气泡引起的流场脉动载荷以及射流载荷特性的相关研究较多。Plesset等[2]早在1949年已对水中气泡运动进行了理论研究,提出的运动方程为众多气泡运动理论研究提供了参考。Klaseboer等[3]研究了炸药爆炸气泡与垂直放置钢板的相互作用,其实验结果已经成为水中爆炸气泡动力学数值模拟的主要参考数据。Koukouvinis等[4]用流体体积法模拟了加速度场中激光泡的膨胀和非球形坍塌,发现在坍塌过程中气泡底部某点较大的坍塌速度会导致动量的集中,进而引起局部坍塌。Liu等[5]采用Front-Tracking法,模拟了固壁附近不同比例距离处的气泡运动,发现比例距离γ≤0.6时气泡完全贴附于壁面,气泡和壁面之间的水层消失,射流会引起壁面上压力的最高峰值,而气泡内部压强会引起第2个峰值。李帅等[6]提出“气泡载荷分解法”,将气泡总载荷分解成脉动载荷和射流载荷两部分,并给出了相应的数值计算方法,计算结果与解析解高度吻合。郑监等[7]提出气泡两次脉动引起的水面现象叠加是产生不同水冢的实质性机理,而气泡到自由液面的无量纲距离对水冢类型起着决定性作用。梁浩哲等[8]用AUTODYN软件进行了计算,发现深水形成的射流速度约350 m/s,远大于浅水下的150 m/s,与刚性壁接触后射流头部的压力也大于浅水中的压力,说明深水环境下的射流更易对结构造成严重破坏。董琪等[9]运用LS-DYNA对不同爆炸深度下的浅水爆炸进行数值模拟,分析了爆炸深度对浅水爆炸气泡半径和射流方向的影响。目前,关于无限水域水下爆炸气泡的研究成果非常丰富,而对多界面影响下的水下爆炸气泡的相关研究略显匮乏,浅水中气泡射流载荷造成结构破坏方面的研究也开展得比较少,有关射流冲击结构过程中的一些现象和破坏机理还没有比较深入的研究。
因为气泡在浅水中的运动主要受距离参数的影响,所以本研究改变气泡初始深度,利用电火花诱导气泡技术进行了一系列实验,并借助高速摄影设备对水下微爆炸过程进行了观察,收集了大量实验图片和数据。对气泡运动水面现象和射流载荷进行了研究,分析了自由面距离和壁面距离对浅水中气泡运动的影响。
1. 实验设计
1.1 实验平台
电火花诱导气泡原理[1]是利用电流热效应,即通过电极燃烧产热、使水介质汽化生成气泡。电火花诱导气泡实验布置如图 1所示,本研究利用该平台进行了气泡与自由液面、水底壁面组合边界相互作用的实验。该平台包括MCH-K1205D型直流稳压电源、FASTCAM-SA1.1型高速摄像机、120 W的LED灯、电极(直径0.1 mm的细铜丝)和25 mm×25 mm×25 mm的正方形水箱。实验过程中高速摄像机设置为6000帧每秒、1024×1024像素,用于观测气泡运动以及水面现象。控制装置用于控制电火花的起爆和高速摄影的同步触发。
1.2 实验工况设计
气泡在自由液面或水底壁面附近运动时,会受到边界的影响而呈现非球状,在坍塌过程中气泡内部会产生射流,气泡运动过程相对于自由场也有所改变。因此,通过调整气泡与界面的距离来研究浅水中气泡运动的规律,第Ⅰ组实验令壁面距离γw不变,改变自由面距离γf来考察其影响;第Ⅱ组实验保持自由面距离γf不变,改变壁面距离γw来考察γw的影响。实验工况设计见表 1。
表 1 实验工况设计Table 1. Experimental conditionsGroup Number γf γw 1 0.63 Ⅰ 2 1.54 0.31 3 2.26 1 0.75 Ⅱ 2 0.38 1.88 3 3.01 将特征压力选择为距离爆炸中心水平无穷远处静水压力p∞,特征长度选择为在压力为p∞的无黏、无旋、不可压缩自由场中球状膨胀气泡的最大半径Rmax[10]。由此引入距离参数γf=d/Rmax和γw=(h−d)/Rmax,分别为气泡到自由液面的无量纲距离γf和气泡到壁面的无量纲距离γw,其中h表示自由液面和水底固壁之间的距离,d表示气泡初始中心到自由液面的距离。本研究选取不同的无量纲距离参数,在电压为100 V时(在自由场中产生气泡最大半径为6 mm[6])进行了实验研究,分析了不同无量纲距离下气泡运动形态和水射流发展过程。
2. 数值模型及有效性验证
本研究基于OpenFOAM软件包中的可压缩两相界面捕获求解器CompressibleInterFoam,利用流体体积方法(Volume of Fluid, VOF)求解,考虑了液体黏性、表面张力和流场中重力的存在,建立如图 2所示的轴对称模型,进行浅水中气泡运动的数值模拟,边界条件在表 2中列出,α、p、U和T分别为相分数、压强、速度和温度。
表 2 自由场中气泡脉动模型的CFD边界条件Table 2. Boundary conditions for CFD of single bubble pulsation in a free fieldBoundary α p U T Empty (left) Empty Empty Empty Empty Advective (right & top) Advective Advective Advective Advective Wedge (front & back) Wedge Wedge Wedge Wedge Wall (bottom) zeroGradient fixedValue(0, 0, 0) zeroGradient zeroGradient 为了验证OpenFOAM计算水下爆炸气泡运动过程的有效性,把仿真结果与用经验公式计算的结果进行对比,分别对半径为0.2、0.3和0.4 cm的球形TNT炸药在水面下20 cm处起爆的过程进行模拟。模拟值与经验公式计算值的对比见表 3,由表 3可以看出,虽然仿真结果与经验值存在一定偏差,但是偏差在可接受范围内,可以用该模型模拟水下爆炸气泡运动过程。其中Ⅰ(1)工况和Ⅱ(1)工况特征时刻仿真结果如图 3和图 4所示。
Charge radius r/cm Charge amount W/g Rm/cm T/ms Empirical Simulation Deviation/% Empirical Simulation Deviation/% 0.2 0.055 6.0 6.3 6.18 11.5 11.2 -2.8 0.3 0.184 8.9 8.3 -6.6 17.2 14.6 -15.3 0.4 0.437 11.9 10.6 -10.1 23.0 18.5 -19.5 3. 实验结果及讨论
3.1 自由面距离γf对气泡运动及水面现象的影响
γf取值范围是0.63~2.26,选取3种典型的实验工况如图 5、图 6、图 7所示,分别对应表 1中的工况Ⅰ(1)、工况Ⅰ(2)、工况Ⅰ(3)。工况Ⅰ(1)放电产生的气泡实测最大半径约为5.3 mm。从图 5(c)t=1.0 ms时可以看出,此工况在气泡膨胀的初期,气泡上半部分保持为球形向外膨胀,气泡下半部分与壁面紧紧贴附,中间的水层变得非常薄,自由液面在气泡上部形成向上竖直喷射的细水柱。在气泡坍塌过程中(图 5(c)~图 5(f)),气泡下表面一直贴附于壁面,下表面收缩慢,上表面收缩快,气泡整体呈倒漏斗状。
工况Ⅰ(2)放电产生的气泡实测最大半径约为6.5 mm。气泡膨胀现象与工况Ⅰ(1)类似。在t=1.0 ms时(图 6(c)),气泡膨胀到最大体积,自由面微微凸起。随后气泡保持半球状收缩至最小体积,气泡表面不再光滑,流场变得紊乱。在第2次气泡脉动过程中(图 6(d)~图 6(i)),液面上缓慢发展出水柱,由于水裙速度大于中心水柱速度,所以初始水冢呈现内凹形。后期水柱中心速度增大,中心高度追赶上水裙高度,粗壮水柱不断发展,最大高度约为69 mm(t=93.0 ms)。
工况Ⅰ(3)放电产生的气泡实测最大半径约为7.0 mm。气泡膨胀现象同工况Ⅰ(1)和Ⅰ(2)类似,但是液面在气泡膨胀过程中抬升不明显。气泡收缩过程中(图 7(b)、图 7(c)),气泡顶端液面仍然几乎保持不变。在第2次气泡脉动过程中(图 7(c)、图 7(d)、图 7(e)),气团向四周散开,自由面上缓慢发展出顶部较尖的丘形水冢,在t=41.0 ms时,水冢达到最大高度,约为16.3 mm。
在壁面距离γw保持为0.31时,不同的自由面距离γf可产生不同形态的水面现象。γf较小时,二次脉动形成的水裙未能追赶上初次水柱,形成细长、不稳定的喷射型水冢,二次水裙若能追赶上初次水柱,则会形成内凹型水冢;γf较大时,二次脉动的水裙与初次水柱融合,二者形状差距不大,则形成较稳定的丘型水冢。可以看出,气泡距离自由面越近,其受自由面的影响越大,水面现象越激烈。
3.2 壁面距离γw对气泡运动及水面现象的影响
γw介于0.75和3.01之间,3种典型的工况如图 8、图 9、图 10所示,分别对应工况Ⅱ(1)、工况Ⅱ(2)、工况Ⅱ(3)。工况Ⅱ(1)放电产生的气泡实测最大半径约为5.3 mm,从图中可以看出,在气泡膨胀的初期(图 8(c),t=0.67 ms),气泡贴近水底壁面呈圆柱状向外扩展,自由液面在气泡上部闭合后形成竖直向上喷射的细水柱。在气泡坍塌过程中(图 8(d)、图 8(e)、图 8(f)),靠近自由液面的部分收缩速度快,靠近水底固壁的部分收缩速度慢。工况Ⅱ(2)最大半径约为5.3 mm。在气泡产生的初期(图 9(a)),自由液面破碎后迅速闭合。气泡收缩过程中,自由液面的排斥作用和刚性壁面的吸引作用都很剧烈,气泡顶部变得扁平,底部呈尖角状,气泡内部形成向下的、较强的、冲向壁面的射流,如图 9(b)。气泡底部受到壁面吸引,贴近壁面发生坍塌过程(图 9(d)、图 9(e)、图 9(f))。在第2次气泡脉动过程中,自由面不断上升,发展出粗壮的水柱,最大高度约为74 mm。工况Ⅱ(3)放电产生的气泡实测最大半径约为5.3 mm,过程与工况Ⅱ(2)类似。
可以发现,气泡形态演化受刚性壁面约束较大,水冢形态基本不受壁面影响。气泡越靠近刚性壁面,其形状越难保持为球形。壁面距离较小时,气泡会被壁面限制发展;随着壁面距离的增大,壁面和气泡之间存在水层,气泡在收缩过程中会受到壁面的吸引作用,底部呈现尖角状;壁面距离大于3倍气泡最大半径时,壁面对气泡的形态变化无明显影响。
现将无量纲的自由面距离γf和壁面距离γw对气泡和水冢形态的影响分类归纳成图 11的分布图。图 11横坐标轴为γf,随着γf的逐渐增大,水冢形态依次经历了破碎型、喷射型、皇冠型、内凹型和丘型;纵坐标为γw,随着γw的逐渐增大,水冢形态无明显变化。
4. 距离参数对气泡动力学的影响
不同的距离参数下,壁面附近气泡的形态差异很大,指向壁面射流的速度大小、冲击压力等变化也很明显。为了研究自由面无量纲距离γf和壁面无量纲距离γw的影响,分别改变γf和γw以研究不同距离参数下气泡射流冲击载荷变化规律。在气泡与双重界面相互作用的过程中,水冢速度vw是指水冢顶端的液体前进速度,射流速度vj是指射流顶端的液体前进速度,壁面压力p是指在气泡射流载荷作用下壁面上受到的压力大小,三者关系如图 12所示。射流穿透气泡瞬间,气泡正下方壁面压力较大,壁面上的压力沿径向迅速减小,图 13给出了压力剖面的示意图,取气泡正下方压力较大的部分,其宽度为射流载荷作用的有效宽度w。当气泡与壁面距离较近时,将产生接触射流[13],即射流直接作用于壁面而不是有一定缓冲作用的水层,如图 14所示,当距离参数较大时,则发生非接触射流。
4.1 水冢顶端速度vw分析
根据实验图像,提取不同时刻水冢顶点高度,进而得到水冢顶点速度vw随时间的变化。图 15为第I组实验vw-t曲线。因为不同自由面距离γf导致了不同的水冢类型,所以vw变化趋势相差比较大。对比3个工况可以看出,工况Ⅰ(1)(γw=0.31)水冢最大速度为15.9 m/s,水冢形成时间约为5.7 ms;工况Ⅰ(2)(γw=1.54)水冢形成时间约为20 ms,水裙吞没水冢后在顶端封闭,流体冲击使顶端产生微射流[1],所以图 15(b)中会有急剧凸起的尖端,最大速度约为5.7 m/s;工况Ⅰ(3)(γw=0.31)最大速度为0.78 m/s,在38.3 ms时水冢形态比较稳定。可见,气泡距离自由面越远,水面运动越缓和,水冢速度越小,形成水冢稳定形态的时间越长。
图 16为第Ⅱ组实验水冢顶点速度vw随时间的变化曲线。从图 16可以看出,在气泡坍塌阶段,水冢开始减速上升。随后气泡顶端和水冢之间形成高压区[8],使水冢速度也重新上升,在射流穿透气泡瞬间,水冢顶端速度达到第2个极值。与γw=0.91工况相比,γw=1.82的工况中水冢上升速度更高,壁面使水冢顶端最大速度增加了约9.9%。这是因为中远壁面距离时,壁面对气泡发展过程的阻碍作用变小,使水冢运动速度和剧烈程显著增加。
4.2 距离参数对射流速度vj的影响
用OpenFOAM软件进行仿真,选取γw=0.31、0.63和0.91时的3组实验,提取每个工况中射流速度vj的最大值,图 17为射流速度vj随距离参数的变化曲线,其中符号为仿真值,实线为拟合曲线。从图 17可以看出,在γw=0.31、0.63和0.91时的3组数据中,vj随着γf的增加而减少。倪宝玉[13]指出,当γw < 0.6时,vj随γw减小而增大;当γw>0.6时,vj随γw增大而增大。在图 17中,γw=0.63时的速度曲线位于γw=0.31和γw=0.91的下方,说明γw=0.63的工况vj更小,这与文献[13]所得结论一致。对于壁面冲击压力而言,接触射流的毁伤性更大,此外,非接触射流速度不可能随着距离参数的增加而无限增大。当距离参数更大后(大约γw>3[13]),气泡将不会形成指向壁面的射流,气泡的运动与自由场中气泡运动类似。
4.3 距离参数对壁面压力的影响
用OpenFOAM进行仿真,当γw=0.31时,γf从0.62变化到1.69,提取各工况射流穿透气泡瞬间壁面压力分布进行对比,如图 18所示。可以看出,随着γf的增加,射流穿透瞬间壁面中心(x=0 mm)处的压力逐渐减小。其主要原因是:γf越小,自由液面对气泡的击退效应越显著,射流穿透气泡瞬间,气泡内部形成的射流越完整,使壁面中心压力越大;γf >1.2,γf过大时,气泡内部射流微弱,以致壁面中心压力变化不明显。当γf=0.91时,γw从0.15变化到1.82,提取各工况射流穿透瞬间壁面压力分布进行对比,如图 19所示。
随着γw的增大,壁面中心(x=0 mm)处的压力逐渐降低。这是因为γw较小时,气泡产生了“接触射流”,如图 12所示,射流穿透气泡瞬间直接作用于壁面,而不是作用在有一定缓冲作用的水层上,导致气泡距离壁面越近,射流压力越大。根据图 20和图 21,压力有效宽度w随着γf和γw的增加而增加。虽然γf和γw较大时,射流冲击壁面的有效宽度有所增加,但是射流作用在壁面上的压力幅值下降明显,射流对壁面的作用由局部小区域的较强作用转变为较大区域的较弱作用。
5. 结论
利用电火花诱导气泡技术对浅水中不同距离参数下的气泡运动进行了实验,同时考虑了自由液面和水底壁面的影响,总结了距离参数对水面现象的影响;同时,结合OpenFOAM软件,对应实验工况建立了仿真模型,研究了距离参数对射流载荷的影响。
(1) 不同的自由面距离可产生不同形态的水面现象,水冢形态受自由面的影响比较大;壁面距离对水冢形态影响不明显,但是对气泡运动形态影响大。
(2) 自由面无量纲距离范围为0 < γf < 3时,气泡射流速度随着γf的增加而减少。壁面距离γw对射流速度的影响分为两段:当0 < γw < 0.6时,气泡射流速度随着γw减小而增大;当0 < γw < 2时,气泡射流速度随着γw增大而增大。这是因为0 < γw < 0.6时,气泡坍塌时内部产生“接触射流”,导致气泡距离壁面越近,射流的速度越大。对于中远距离壁面附近的气泡,壁面的存在会阻碍气泡的完全发展,从而也会阻碍射流的充分发展,所以射流速度随着壁面距离的增大而增大。
(3) 射流穿透瞬间,随着自由面无量纲距离的增加(0 < γf < 2),自由面对气泡的排斥作用逐渐减弱,Bjerknes力也变小,导致壁面中心处的压力逐渐减小;随着壁面距离的增大(0 < γw < 2),同样地,壁面Bjerknes力越来越小,使壁面中心处的压力也逐渐降低。此外,在0 < γf < 2和0 < γw < 2时,壁面压力随距离增大而减小,但有效宽度与距离呈正相关,因此需综合考虑压力大小和有效宽度两个因素来确定射流载荷对壁面的破坏效果。
-
图 3 (a) MAEAM势预测的物态方程与实验及第一原理计算结果的对比,(b) 采用MAEAM势与改进的Ackland势的计算结果对比[49, 52-54]
Figure 3. (a) Comparison of equations of states predicted by MAEAM potential with experiments and the first-principle calculations, (b) Comparison of the results between MAEAM potential and modified Ackland potential[49, 52-54]
图 6 实现高应变率加卸载的3种方法:(a)活塞加载,(b)对称撞击,(c)均匀单轴压缩(“M”表示材料,箭头表示活塞或材料的运动方向,灰色梯度表示材料受到碰撞时形成的冲击波)
Figure 6. Three simulation approaches of de-/compression under high strain rates: (a) piston loadings, (b) symmetric impingements and (c) uniform uniaxial compressions, where “M” represents materials and the arrows show the motion directions of the piston and materials, and shock waves initiated around the impinging moment are illustrated by the grayscale
图 8 (a)不同冲击晶向与冲击强度下单晶铁的相变(红色、黄色、浅蓝色和深蓝色分别表示hcp原子、fcc原子、bcc原子和缺陷原子),(b)冲击晶向与惯习面的关系[34]
Figure 8. (a) Phase transition of single crystalline iron under different shock directions and shock strength (The meaning of the colors is: red (hcp atoms), yellow (fcc atoms), light blue (bcc atoms) and dark blue (defects).); (b) relationship between the shock direction and habit plane[34]
图 12 (a)斜波加载下临界失稳应变与应变梯度的依赖关系;(b)
˜B 的最小本征值(Cmin)随单轴应变的变化;(c)~(d)分别以˜T1min 和˜T3min 表示的应变-应变梯度空间中的等高图(˜T1min 和˜T3min 分别为˜T 沿x和z方向分量的最小本征值,图中所有的A对应于相同的应变)[62]Figure 12. (a) Critical instability strain versus strain gradient under ramp compressions; (b) minimumeigenvalue of
˜B versus uniaxial strain; (c) and (d) are the contour plot˜T1min and˜T3min in the strain vs. strain gradient space, where˜T1min and˜T3min are the minimum eigenvalue of the x- and z-component of˜T (In the figures, “A” corresponds to the same strain.)[62]图 16 含有孪晶的双晶铁样品在最大粒子速度为0.4 km/s的斜波压缩下31 ps时的局部构型(红色表示hcp原子,蓝色表示bcc原子,右图hcp晶胞中黄色的原子面对应于左图中黄色方框标记的原子面)[74]
Figure 16. Local configuration of bicrystal iron sample containing a twin at 31 ps under ramp compressions with a maximum particle velocity of 0.4 km/s (Red denotes hcp atom and blue denotes bcc atom. The right figure shows a unit cell of hcp phase, where the yellow atomic face corresponds to the atomic face marked with yellow square in the left figure.)[74]
图 17 在0.5 km/s的粒子速度下
Σ3 扭转晶界(a)与Σ3 倾斜晶界(b)的冲击塑性与相变(冲击波沿z方向传播,在两种样品中分别对应于<110>和<111>晶向)[75]Figure 17. Shock-induced plasticity and phase transition of
Σ3 twist grain boundary (a) andΣ3 tilt grain boundary (b) under the shock with a particle velocity of 0.5 km/s, where shock wave propagates along z direction, corresponding to <110> and <111> crystallographic direction, respectively[75]图 20 激光冲击实验回收的铁样品:(a)样品初始温度293 K,层裂面处的最高加载状态处于
α →ε 相变边界上;(b) 样品初始温度673 K,层裂面处的最高加载状态处于两相共存区[81]Figure 20. Iron samples recovered after laser shocks (a) at 293 K, where the maximum loading state of the spall plane is on the
α →ε phase transition boundary, and (b) at 673 K, where the maximum loading state of the spall plane locates at the two-phase-coexistence region[81]图 21 柱面内爆(a)和外爆(b)冲击加载示意图(蓝色表示试样,紫色圆环表示柱形势能面,红色箭头表示加载方向)
Figure 21. Schematic diagram of the shock loading by cylindrical (a) implosion and (b) explosion (The blue part represents the sample, the purple ring represents the energy surface of the column, and the red arrow represents the loading direction.)
图 22 (a)柱面轴沿单晶Fe [001]晶向在内爆冲击下垂直于柱面轴的横截面内的原子速率分布,(b)10 ps时垂直柱面轴横截面内的局域温度分布
Figure 22. (a) Atom velocity distribution in the cross section perpendicular to the cylindrical axis under implosion impact along [001] direction of Fe single crystal, and (b) the local temperature distribution in the cross section perpendicular to the cylindrical axis at 10 ps
图 23 柱面轴沿单晶Fe [001]晶向在内爆冲击下(vp = 0.6 km/s)局域微结构随时间的演变(红色表示hcp结构原子,绿色表示以层错形式出现的fcc结构原子,灰色表示位错线周围的其他结构类型的原子,为清晰起见,未相变的bcc结构原子已被删除)
Figure 23. Evolutions of local microstructures with time under the implosive impacting with the cylindrical axis along [001] direction of Fe single crystal (vp = 0.6 km/s) (Red indicates hcp atoms, green indicates fcc atoms in the forms of stacking faults, and gray indicates other atoms distributed around dislocation lines. For clarity, bcc atoms without phase transition have been removed.)
a1 a2 a3 a4 a5 a6 A1 A2 −31.807065 36.158663 12.237970 −72.863506 156.864024 200.148093 72.868383 −100.944857 r1 r2 r3 r4 r5 r6 R1 R2 1.450000 1.430000 1.080000 0.990000 0.930000 0.866025 1.300000 1.200000 m n F0 g0 α β γ 55.847 0.289 2.1952807 1 9.17×10−3 4.15 5.01 ρe Pe k0 k1 k2 k3 kc 10.875221 10.443309 −3.6918979 −0.3369724 −0.4937837 −0.3210981 0.3 表 3 改进的Ackland势与MAEAM势预测的铁主要物理性质与有关第一原理计算及实验结果的对比
Table 3. Comparisons of key properties of iron predicted using modified Ackland potential and MAEAM potential with the first-principle-base calculations or experimental results
Method Basic properties a0/Å Ec/eV Ef,11v/eV Ef,21v/eV γ110unf/(J·m−2) γ112unf/(J·m−2) Modified-Ackland 2.866 4.316 1.89 1.83 0.669 0.769 MAEAM 2.8606 4.28 2.09 1.86 0.652 0.710 Ref. 2.8606[41]
2.88[42]
2.86[43]4.28[44] 2.07[42]
1.95[43]2.0[37] 0.47 (GGA)[45]
0.59 (LDA)[45]Method Basic properties Elastic Vibrational ΔEfcc-bcc/eV ΔEhcp-bcc/eV C11/GPa C12/GPa C44/GPa νT1N /THz Modified-Ackland 0.135 0.191 243.7 145.3 116.3 10.83 MAEAM 0.034 0.016 243 138 127 9.39 Ref. 243.1[46]
243.0[47]138.1[46]
138.0[47]121.9[46]
127.0[47]9.26[48] Method Vibrational Others νT2N/THz νLN/THz νH/THz νP/THz pT/GPa Tm/K Modified-Ackland 5.99 3.85 9.77 8.61 13.75 MAEAM 5.93 2.86 9.18 7.16 11 1807 Ref. 6.46[48] 4.47[48] 8.49[48] 7.19[48] 10[49]
10.5[50]1813[51] -
[1] VOČADLO L, ALFÈ D, GILLAN M J, et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core [J]. Nature, 2003, 424(6948): 536–539. doi: 10.1038/nature01829 [2] BELONOSHKO A B, AHUJA R, JOHANSSON B. Stability of the body-centred-cubic phase of iron in the Earth’s inner core [J]. Nature, 2003, 424(6952): 1032–1034. doi: 10.1038/nature01954 [3] BAXEVANIS T, PARRINELLO A F, LAGOUDAS D C. On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys [J]. International Journal of Plasticity, 2013, 50: 158–169. doi: 10.1016/J.IJPLAS.2013.04.007 [4] GUNKELMANN N, BRINGA E M, URBASSEK H M. Influence of phase transition on shock-induced spallation in nanocrystalline iron [J]. Journal of Applied Physics, 2015, 118(18): 185902. doi: 10.1063/1.4935452 [5] CHERKAOUI M, BERVEILLER M, LEMOINE X. Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels [J]. International Journal of Plasticity, 2000, 16(10/11): 1215–1241. doi: 10.1016/S0749-6419(00)00008-5 [6] TAKAHASHI T, BASSETT W A. High-pressure polymorph of iron [J]. Science, 1964, 145(3631): 483–486. doi: 10.1126/science.145.3631.483 [7] BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. doi: 10.1063/1.1722359 [8] 唐志平. 冲击相变[M]. 北京: 科学出版社, 2008.TANG Z P. Shock-induced phase transition [M]. Beijing: Science Press, 2008. [9] 唐志平. 冲击相变研究的现状与趋势 [J]. 高压物理学报, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003TANG Z P. Some topics in shock-induced phase transitions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003 [10] BLANK V D, ESTRIN E I. Phase transitions in solids under high pressure [M]. Boca Raton: CRC Press, 2013. [11] MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, 1994. [12] ZARKEVICH N A, JOHNSON D D. Coexistence pressure for a martensitic transformation from theory and experiment: revisiting the bcc-hcp transition of iron under pressure [J]. Physical Review B, 2015, 91(17): 174104. doi: 10.1103/PhysRevB.91.174104 [13] AIRSS. Ab initio random structure searching [EB/OL]. [2021–03–03]. https://www.mtg.msm.cam.ac.uk/Codes/AIRSS. [14] CALYPSO. CALYPSO: an efficient structure prediction method and computer software [EB/OL]. [2021−03−03]. http://calypso.cn/cdg/. [15] SCHAEFER B, MOHR S, AMSLER M, et al. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways [J]. The Journal of Chemical Physics, 2014, 140(21): 214102. doi: 10.1063/1.4878944 [16] MILATHIANAKI D, BOUTET S, WILLIAMS G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter [J]. Science, 2013, 342(6155): 220–223. doi: 10.1126/science.1239566 [17] SHEN G Y, MAO H K, HEMLEY R J, et al. Melting and crystal structure of iron at high pressures and temperatures [J]. Geophysical Research Letters, 1998, 25(3): 373–376. doi: 10.1029/97GL03776 [18] HARRISON R J, VOTER A F, CHEN S P. Embedded atom potential for BCC iron [M]//VITEK V, SROLOVITZ D J. Atomistic Simulation of Materials. Boston: Springer, 1989: 219–222. [19] MEYER R, ENTEL P. Martensite-austenite transition and phonon dispersion curves of Fe1- xNix studied by molecular-dynamics simulations [J]. Physical Review B, 1998, 57(9): 5140–5147. doi: 10.1103/PhysRevB.57.5140 [20] MENDELEV M I, HAN S, SROLOVITZ D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philosophical Magazine, 2003, 83(35): 3977–3994. doi: 10.1080/14786430310001613264 [21] GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. doi: 10.1103/PhysRevB.86.144111 [22] KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120 [23] WANG F M, INGALLS R. Iron bcc-hcp transition: local structure from x-ray-absorption fine structure [J]. Physical Review B, 1998, 57(10): 5647–5654. doi: 10.1103/PhysRevB.57.5647 [24] SANO T, MORI H, SAKATA O, et al. Femtosecond laser driven shock synthesis of the high-pressure phase of iron [J]. Applied Surface Science, 2005, 247(1/2/3/4): 571–576. doi: 10.1016/j.apsusc.2005.01.050 [25] HAWRELIAK J, COLVIN J D, EGGERT J H, et al. Analysis of the x-ray diffraction signal for the α−ɛ transition in shock-compressed iron: simulation and experiment [J]. Physical Review B, 2006, 74(18): 184107. doi: 10.1103/PhysRevB.74.184107 [26] LU Z P, ZHU W J, LU T C, et al. Does the fcc phase exist in the Fe bcc–hcp transition? A conclusion from first-principles studies [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025007. doi: 10.1088/0965-0393/22/2/025007 [27] KALANTAR D H, BELAK J F, COLLINS G W, et al. Direct observation of the α−ɛ transition in shock-compressed iron via nanosecond x-ray diffraction [J]. Physical Review Letters, 2005, 95(7): 075502. doi: 10.1103/PhysRevLett.95.075502 [28] KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375 [29] DEWAELE A, DENOUAL C, ANZELLINI S, et al. Mechanism of the α−ɛ phase transformation in iron [J]. Physical Review B, 2015, 91(17): 174105. doi: 10.1103/PhysRevB.91.174105 [30] KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701 [31] RAVELO R, AN Q, GERMANN T C, et al. Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals [J]. AIP Conference Proceedings, 2012, 1426(1): 1263–1266. doi: 10.1063/1.3686510 [32] EHEMANN R C, NICKLAS J W, PARK H, et al. Ab initio based empirical potential applied to tungsten at high pressure [J]. Physical Review B, 2017, 95(18): 184101. doi: 10.1103/PhysRevB.95.184101 [33] WANG K, ZHU W J, XIANG M Z, et al. Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions [J]. Modelling and Simulation in Materials Science and Engineering, 2019, 27(1): 015001. doi: 10.1088/1361-651X/aaea55 [34] WANG K, XIAO S F, DENG H Q, et al. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals [J]. International Journal of Plasticity, 2014, 59: 180–198. doi: 10.1016/j.ijplas.2014.03.007 [35] ACKLAND G J, BACON D J, CALDER A F, et al. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential [J]. Philosophical Magazine A, 1997, 75(3): 713–732. doi: 10.1080/01418619708207198 [36] GUNKELMANN N, BRINGA E M, TRAMONTINA D R, et al. Shock waves in polycrystalline iron: plasticity and phase transitions [J]. Physical Review B, 2014, 89(14): 140102. doi: 10.1103/PhysRevB.89.140102 [37] 张邦维, 胡望宇, 舒小林. 嵌入原子方法理论及其在材料科学中的应用: 原子尺度材料设计理论[M]. 长沙: 湖南大学出版社, 2003.ZHANG B W, HU W Y, SHU X L. Theory of embedded atom method and its application to materials science [M]. Changsha: Hunan University Press, 2003. [38] WANG K, XIAO S F, LIU M, et al. Shock waves propagation and phase transition in single crystal iron under ramp compression: large scale parallel NEMD simulations [J]. Procedia Engineering, 2013, 61: 122–129. doi: 10.1016/j.proeng.2013.07.104 [39] WANG K, ZHU W J, XIAO S F, et al. A new embedded-atom method approach based on the p-th moment approximation [J]. Journal of Physics: Condensed Matter, 2016, 28(50): 505201. doi: 10.1088/0953-8984/28/50/505201 [40] 王昆. 铁冲击塑性与相变的原子模拟[D]. 长沙: 湖南大学, 2015: 46−48.WANG K. An atomistic study on shock induced plasiticity and phase transition of iron [D]. Changsha: Hunan University, 2015: 46−48. [41] LUO W H, HU W Y, XIAO S F, et al. Phase transition in nanocrystalline iron: atomistic-level simulations [J]. International Journal of Materials Research, 2010, 101(11): 1361–1368. doi: 10.3139/146.110418 [42] FU C C, WILLAIME F, ORDEJÓN P. Stability and mobility of mono- and di-interstitials in α-Fe [J]. Physical Review Letters, 2004, 92(17): 175503. doi: 10.1103/PhysRevLett.92.175503 [43] DOMAIN C, BECQUART C S. Ab initio calculations of defects in Fe and dilute Fe-Cu alloys [J]. Physical Review B, 2001, 65(2): 024103. doi: 10.1103/PhysRevB.65.024103 [44] DE BOER F R, BOOM R, MATTENS W C M, et al. Cohesion in metals: transition metal alloys [M]. New York: North-Holland, 1988. [45] YAN J A, WANG C Y, WANG S Y. Generalized-stacking-fault energy and dislocation properties in bcc Fe: a first-principles study [J]. Physical Review B, 2004, 70(17): 174105. doi: 10.1103/PhysRevB.70.174105 [46] RAYNE J A, CHANDRASEKHAR B S. Elastic constants of iron from 4.2 to 300 K [J]. Physical Review, 1961, 122(6): 1714–1716. doi: 10.1103/PHYSREV.122.1714 [47] SIMMONS G, WANG H. Single crystal elastic constants and calculated aggregate properties [M]. Cambridge: MIT Press, 1971. [48] KLOTZ S, BRADEN M. Phonon dispersion of bcc iron to 10 GPa [J]. Physical Review Letters, 2000, 85(15): 3209–3212. doi: 10.1103/PhysRevLett.85.3209 [49] SÖDERLIND P, MORIARTY J A, WILLS J M. First-principles theory of iron up to earth-core pressures: structural, vibrational, and elastic properties [J]. Physical Review B, 1996, 53(21): 14063–14072. doi: 10.1103/physrevb.53.14063 [50] CASPERSEN K J, LEW A, ORTIZ M, et al. Importance of shear in the bcc-to-hcp transformation in iron [J]. Physical Review Letters, 2004, 93(11): 115501. doi: 10.1103/PhysRevLett.93.115501 [51] WOAN G. The Cambridge handbook of physics formulas [M]. Cambridge: Cambridge University Press, 2003: 124−125. [52] DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Quasihydrostatic equation of state of iron above 2 mbar [J]. Physical Review Letters, 2006, 97(21): 215504. doi: 10.1103/PhysRevLett.97.215504 [53] SHA X W, COHEN R E. Lattice dynamics and thermodynamics of bcc iron under pressure: first-principles linear response study [J]. Physical Review B, 2006, 73(10): 104303. doi: 10.1103/PhysRevB.73.104303 [54] SHA X W, COHEN R E. First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures [J]. Physical Review B, 2010, 81(9): 094105. doi: 10.1103/PhysRevB.81.094105 [55] HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. doi: 10.1016/j.actamat.2016.12.033 [56] DENOEUD A, OZAKI N, BENUZZI-MOUNAIX A, et al. Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7745–7749. doi: 10.1073/PNAS.1512127113 [57] AMADOU N, DE RESSEGUIER T, DRAGON A, et al. Coupling between plasticity and phase transition in shock- and ramp-compressed single-crystal iron [J]. Physical Review B, 2018, 98(2): 024104. doi: 10.1103/PhysRevB.98.024104 [58] SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655 [59] SMITH R F, EGGERT J H, RUDD R E, et al. High strain-rate plastic flow in Al and Fe [J]. Journal of Applied Physics, 2011, 110(12): 123515. doi: 10.1063/1.3670001 [60] LUO B Q, LI M, WANG G J, et al. Strain rate and hydrostatic pressure effects on strength of iron [J]. Mechanics of Materials, 2017, 114: 142–146. doi: 10.1016/j.mechmat.2017.08.001 [61] AMADOU N, DE RESSEGUIER T, BRAMBRINK E, et al. Kinetics of the iron α−ɛ phase transition at high-strain rates: experiment and model [J]. Physical Review B, 2016, 93(21): 214108. doi: 10.1103/PhysRevB.93.214108 [62] WANG K, CHEN J, ZHU W J, et al. Phase transition of iron-based single crystals under ramp compressions with extreme strain rates [J]. International Journal of Plasticity, 2017, 96: 56–80. doi: 10.1016/j.ijplas.2017.04.016 [63] PANG W W, ZHANG P, ZHANG G C, et al. Nucleation and growth mechanisms of hcp domains in compressed iron [J]. Scientific Reports, 2014, 4: 5273. doi: 10.1038/SREP05273 [64] PANG W W, ZHANG P, ZHANG G C, et al. Morphology and growth speed of hcp domains during shock-induced phase transition in iron [J]. Scientific Reports, 2014, 4: 3628. doi: 10.1038/srep03628. [65] SHAO J L, DUAN S Q, HE A M, et al. Dynamic properties of structural transition in iron under uniaxial compression [J]. Journal of Physics: Condensed Matter, 2009, 21(24): 245703. doi: 10.1088/0953-8984/21/24/245703 [66] 王昆. 极端应变率下金属的塑性与相变[R]. 北京: 北京应用物理与计算数学研究所, 2018.WANG K. Plasticity and phase transition of metals at extreme strain rates [R]. Beijing: Institute of Applied Physics and Computational Mathematics, 2018. [67] WANG K, ZHU W J, XIAO S F, et al. Coupling between plasticity and phase transition of polycrystalline iron under shock compressions [J]. International Journal of Plasticity, 2015, 71: 218–236. doi: 10.1016/J.IJPLAS.2015.01.002 [68] SHAO J L, DUAN S Q, HE A M, et al. Microscopic dynamics of structural transition in iron with a nanovoid under shock loading [J]. Journal of Physics: Condensed Matter, 2010, 22(35): 355403. doi: 10.1088/0953-8984/22/35/355403 [69] JENSEN B J, GRAY III G T, HIXSON R S. Direct measurements of the α−ɛ transition stress and kinetics for shocked iron [J]. Journal of Applied Physics, 2009, 105(10): 103502. doi: 10.1063/1.3110188 [70] SHAO J L, WANG P, ZHANG F G, et al. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron [J]. Journal of Physics: Condensed Matter, 2018, 30(25): 255401. doi: 10.1088/1361-648X/aac40c [71] CUI X L, ZHU W J, HE H L, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PhysRevB.78.024115 [72] WU L, WANG K, XIAO S F, et al. Atomistic studies of shock-induced phase transformations in single crystal iron with cylindrical nanopores [J]. Computational Materials Science, 2016, 122: 1–10. doi: 10.1016/j.commatsci.2016.05.010 [73] GUNKELMANN N, TRAMONTINA D R, BRINGA E M, et al. Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron [J]. New Journal of Physics, 2014, 16(9): 093032. doi: 10.1088/1367-2630/16/9/093032 [74] WANG K, CHEN J, ZHANG X Y, et al. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading [J]. Journal of Applied Physics, 2017, 122(10): 105107. doi: 10.1063/1.4997320 [75] ZHANG X Y, WANG K, ZHU W J, et al. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals [J]. Journal of Applied Physics, 2018, 123(4): 045105. doi: 10.1063/1.5003891 [76] HUANG Y F, XIONG Y N, LI P, et al. Atomistic studies of shock-induced plasticity and phase transition in iron-based single crystal with edge dislocation [J]. International Journal of Plasticity, 2019, 114: 215–226. doi: 10.3390/POLYM6092404 [77] LEVITAS V I, JAVANBAKHT M. Interaction between phase transformations and dislocations at the nanoscale. Part 1: general phase field approach [J]. Journal of the Mechanics and Physics of Solids, 2015, 82: 287–319. doi: 10.1016/j.jmps.2015.05.005 [78] JAVANBAKHT M, LEVITAS V I. Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples [J]. Journal of the Mechanics and Physics of Solids, 2015, 82: 164–185. doi: 10.1016/J.JMPS.2015.05.006 [79] WANG S J, SUI M L, CHEN Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Scientific Reports, 2013, 3: 1086. doi: 10.1038/srep01086 [80] GUNKELMANN N, TRAMONTINA D R, BRINGA E M, et al. Morphological changes in polycrystalline Fe after compression and release [J]. Journal of Applied Physics, 2015, 117(8): 085901. doi: 10.1063/1.4913622 [81] DE RESSÉGUIER T, LESCOUTE E, LOISON D. Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded iron [J]. Physical Review B, 2012, 86(21): 214102. doi: 10.1103/PhysRevB.86.214102 [82] 陈永涛, 唐小军, 李庆忠, 等. 纯铁材料的冲击相变与"反常"层裂 [J]. 爆炸与冲击, 2009, 29(6): 637–641. doi: 10.11883/1001-1455(2009)06-0637-05CHEN Y T, TANG X J, LI Q Z, et al. Phase transition and abnormal spallation in pure iron [J]. Explosion and Shock Waves, 2009, 29(6): 637–641. doi: 10.11883/1001-1455(2009)06-0637-05 [83] 杨世源, 金孝刚, 王军霞, 等. 冲击波加载技术及其在材料研究中的应用 [J]. 材料研究学报, 2008, 22(2): 120–124. doi: 10.3321/j.issn:1005-3093.2008.02.002YANG S Y, JIN X G, WANG J X, et al. Shock loading technique and the application in materials research [J]. Chinese Journal of Materials Research, 2008, 22(2): 120–124. doi: 10.3321/j.issn:1005-3093.2008.02.002 [84] 谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701 [85] 江少恩, 丁永坤, 缪文勇, 等. 我国激光惯性约束聚变实验研究进展 [J]. 中国科学 G辑: 物理学 力学 天文学, 2009, 39(11): 1571–1583.JIANG S E, DING Y K, MIAO W Y, et al. Recent progress of inertial confinement fusion experiments in China [J]. Science in China (Series G), 2009, 39(11): 1571–1583. [86] MEYERS M A, REMINGTON B A, MADDOX B, et al. Laser shocking of materials: toward the national ignition facility [J]. JOM, 2010, 62(1): 24–30. doi: 10.1007/S11837-010-0006-X [87] DOBROMYSLOV A V, KOZLOV E A, TALUTS N I. High-strain-rate deformation of armco iron induced by spherical and quasi-spherical converging shock waves and the mechanism of the α−ɛ transformation [J]. The Physics of Metals and Metallography, 2008, 106(5): 531–541. doi: 10.1134/S0031918X08110136 [88] DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Deformation behavior of copper upon loading by spherically converging shock waves: low-intensity loading conditions [J]. The Physics of Metals and Metallography, 2013, 114(4): 358–366. doi: 10.1134/S0031918X13040029 [89] DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Deformation behavior of copper under conditions of loading by spherically converging shock waves: high-intensity regime of loading [J]. The Physics of Metals and Metallography, 2015, 116(1): 97–108. doi: 10.1134/S0031918X15010044 [90] TANG F, JIAN Z Y, XIAO S F, et al. Molecular dynamics simulation of cylindrically converging shock response in single crystal Cu [J]. Computational Materials Science, 2020, 183: 109845. doi: 10.1016/j.commatsci.2020.109845 [91] MURR L E. Metallurgical effects of shock and high-strain-rate loading [M]//BLAZYNSKI T Z. Materials as High Strain Rates. Amsterdam: Elsevier, 1987: 1–46. [92] ASAY J R, CHHABILDAS L C, LAWRENCE R J, et al. Impactful times: memories of 60 years of shock wave research at Sandia National Laboratories [M]. Cham: Springer International Publishing, 2017. [93] VATTRÉ A, DENOUAL C. Continuum nonlinear dynamics of unstable shock waves induced by structural phase transformations in iron [J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 387–403. doi: 10.1016/j.jmps.2019.07.012 [94] VATTRÉ A, DENOUAL C. Polymorphism of iron at high pressure: a 3D phase-field model for displacive transitions with finite elastoplastic deformations [J]. Journal of the Mechanics and Physics of Solids, 2016, 92: 1–27. doi: 10.1016/j.jmps.2016.01.016 [95] DENOUAL C, VATTRÉ A. A phase field approach with a reaction pathways-based potential to model reconstructive martensitic transformations with a large number of variants [J]. Journal of the Mechanics and Physics of Solids, 2016, 90: 91–107. doi: 10.1016/j.jmps.2016.02.022 [96] GREENWOOD M, OFORI-OPOKU N, ROTTLER J, et al. Modeling structural transformations in binary alloys with phase field crystals [J]. Physical Review B, 2011, 84(6): 064104. doi: 10.1103/PhysRevB.84.064104 [97] GREENWOOD M, PROVATAS N, ROTTLER J. Free energy functionals for efficient phase field crystal modeling of structural phase transformations [J]. Physical Review Letters, 2010, 105(4): 045702. doi: 10.1103/PhysRevLett.105.045702 -