绝热剪切变形中温升现象的研究进展

胡博 郭亚洲 魏秋明 索涛 李玉龙

武晓东, 张海广, 王瑜, 孟祥生. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应[J]. 高压物理学报, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
引用本文: 胡博, 郭亚洲, 魏秋明, 索涛, 李玉龙. 绝热剪切变形中温升现象的研究进展[J]. 高压物理学报, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728
WU Xiaodong, ZHANG Haiguang, WANG Yu, MENG Xiangsheng. Dynamic Responses of Nare-Like Voronoi Structure under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
Citation: HU Bo, GUO Yazhou, WEI Qiuming, SUO Tao, LI Yulong. Temperature Rise during Adiabatic Shear Deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728

绝热剪切变形中温升现象的研究进展

doi: 10.11858/gywlxb.20210728
基金项目: 国家自然科学基金(11672354,11922211);111引智计划(BP0719007)
详细信息
    作者简介:

    胡 博(1994-),男,硕士,主要从事金属材料绝热剪切失效研究. E-mail:hubo94@mail.nwpu.edu.cn

    通讯作者:

    郭亚洲(1981-),男,博士,教授,主要从事材料动态力学行为和实验技术研究. E-mail:guoyazhou@nwpu.edu.cn

  • 中图分类号: O347

Temperature Rise during Adiabatic Shear Deformation

  • 摘要: 材料温度升高是绝热剪切现象的重要特征,研究绝热剪切中的温升对于深入了解绝热剪切失效的形成机制和演化历程具有重要意义,同时对预测材料和结构的动态失效具有重要的实用价值。一般而言,绝热剪切过程中的温升可以分为3个阶段:均匀变形阶段的温升、剪切局部化引起的温升、剪切带形成后热传导引起绝热剪切带附近的温升。本文从理论计算、数值模拟、实验测量和微观组织演化4个方面对绝热剪切中的温升相关研究进行了综述。通过对已有文献的系统整理和总结,以期为开展后续绝热剪切失效相关研究工作给出一定的启发和参考。

     

  • 图  Ta-2.5%W合金限制应变(0.32)后不同温度下二次加载曲线与单次加载应力-应变曲线比较[50]

    Figure  1.  Comparison of secondary loading curve and single loading ture stress-ture strain curve at different temperatures while Ta-2.5%W alloy was limited strain (0.32)[50]

    图  (a)不同应变率、加载方式下镁基金属的功热转化系数[52],(b)不同材料在不同加载方式下的Taylor-Quinney系数范围(C、T和S分别代表压缩、拉伸和剪切3种加载模式)[30]

    Figure  2.  (a) Work heat conversion coefficients of magnesium based metals under different strain rates and loading modes[52], (b) Taylor-Quinney coefficient range of different materials under different loading methods (C is compression mode, T is tension mode, S is shear mode.)[30]

    图  动态加载后功热转化系数在帽型试样截面的分布[55]

    Figure  3.  Distribution of work heat conversion coefficient in the cap specimen cross section after dynamic loading[55]

    图  (a)钛在不同晶粒尺寸和初始温度下剪切带内的降温曲线[64], (b)金属玻璃剪切带附近不同时刻的温升分布[66](时间单位为ns)

    Figure  4.  (a) Ti cooling curves in shear band with different grain size and initial temperature[64], (b) temperature rise distribution at different times near the shear band of metallic glass[66] (t is in nanoseconds)

    图  (a)CRS-1018钢在不同塑性应变下温度的空间分布[74],(b)4种热软化模型描述的剪切带中心温度随名义应变的变化(θ表示带内温度与环境温度的差,图例表示不同热软化模型函数)[75]

    Figure  5.  (a) Temperature profiles of CRS-1018 steel at different plastic strain[74], (b) relationship between the shear band center temperature and nominal strain described by four thermal softening models (θ is the difference between the temperature in the band and the ambient temperature. The legend shows the different heat softening model functions.)[75]

    图  (a)模型中心处应力、温度以及应变率随时间的变化[76],(b)纳米铁剪切带内应力和温度的演化[78]

    Figure  6.  (a) Time dependence of stress, temperature and strain rate at the center of the model[76], (b) evolution diagram of internal stress and temperature in shear band of nano-iron[78]

    图  25 m/s下不同时刻沿剪切带方向的温度分布曲线[83]

    Figure  7.  Temperature profiles along shear band line at different times after 25 m/s impact[83]

    图  (a)动态扭转有限元计算试样中面的温度分布(图例中由蓝色到红色温度逐渐升高)[84],(b)不同模拟时刻(25、30、35、40、45 μs)不锈钢剪切区域的温度分布[85]

    Figure  8.  (a) Computed contour plot of the temperature distributions within the specimen near the notch tip at the end of the simulation[84], (b) profile of temperature at 316L stainless steel at different simulation times (25、30、35、40、45 μs)[85]

    图  (a)PMMA在不同应变率加载条件下的应力-应变关系以及温升-应变关系[94],(b)PC盘形试样动态加载(平均名义应变率为6500 s−1)条件下应力和温升随应变的变化关系[95]

    Figure  9.  (a) Stress-strain and strain-temperature-rise curves for PMMA at various strain rates in compression[94], (b) true stress-true strain and temperature rises for PC disk 41 (Nominal average strain rate is 6500 s−1)[95]

    图  10  (a)铁基形状记忆合金非弹性应变和热电偶温度信号随时间的变化[97],(b)铁基形状记忆合金在压缩[97]和拉伸[98]加载时,不同应变率下试样表面的温升-应变关系

    Figure  10.  (a) Time history of inelastic strain and change in temperature under compression[97], (b) temperature rise-true strain curves of shape memory alloy under compression[97] and tension[98]

    图  11  (a)预置裂纹钢板动态加载过程中裂纹扩展路径附近某处的温度演化[99],(b)预置疲劳裂纹PMMA试样动态加载过程中试样内部的温度演化[100]

    Figure  11.  (a) Measured temperature history of steel data experienced by material near the path of a rapidly propagating crack[99], (b) temperature of PMMA recorded in the vicinity of fracture time[100]

    图  12  (a)绝热剪切温度测量系统[103],(b)探元阵列测得剪切带附近的温度变化历程[105]

    Figure  12.  (a) Adiabatic shear temperature measurement system[103], (b) temperature change near the shear zone measured by probe array[105]

    图  13  (a)圆柱子弹冲击带缺口平板加载方式示意图[106],(b)动态加载裂纹尖端温度场分布[107]

    Figure  13.  (a) Asymmetric impact configuration and failure mode[106], (b) a high-speed thermal image of a developed shear band[107]

    图  14  低温传感器测温实验结果(a)和高温传感器测温实验结果(b)[108]

    Figure  14.  3D temperature visualization at ‘‘low temperatures’’ range (a) and radiance temperature field at ‘‘high temperatures’’ range (b)[108]

    图  15  (a)Ti-6Al-4V合金的力学-测温实验结果[32],(b)纯钛的力学-测温实验结果[112]

    Figure  15.  (a) Typical stress and temperature vs. strain for Ti-6Al-4V alloys[32], (b) typical stress and temperature vs. strain for pure titanium[112]

    图  16  PC高分子聚合物在3000 s−1(a)和6000 s−1(b)应变率下应力和温度随应变的变化曲线(蓝色实线为真实应力,黑色实线为热电偶测温结果,红色虚线为红外测温结果。)[117]

    Figure  16.  Typical stress-strain-temperature plot at 3000 s−1 (a) and 6000 s−1 (b) (The blue solid line represents the real stress, the black solid line represents the thermocouple temperature measurement results, the red dotted line represents the infrared temperature measurement results.)[117]

    图  17  绝热剪切的微观形貌[118]:(a)4340钢动态扭转加载后材料断面的整体微观形貌,(b)瘤状凸起处的放大图

    Figure  17.  Microstructure of adiabatic shear[118]: (a) microstructure of cross section of 4340 steel after dynamic torsion loading, (b) higher magnification SEM fractograph of the knobbly region

    图  18  (a)HY-100结构钢动态扭转加载后断面的白色侵蚀面[103],(b)Ti-6Al-4V靶板冲击后剪切带内的微观组织形貌[4]

    Figure  18.  (a) White erosion surface of HY-100 structural steel after dynamic torsion loading[103], (b) microstructure in shear band of Ti-6Al-4V target after impact[4]

    图  19  (a)铜剪切带内部的TEM微观结构和衍射图谱[120],(b)8090铝-锂合金剪切带内部的TEM微观结构和衍射图谱[122]

    Figure  19.  (a) TEM microstructure and diffraction pattern of copper shear band[120], (b) TEM microstructure and diffraction pattern in shear band of 8090 Al-Li alloy[122]

    图  20  不锈钢动态加载后的微观TEM图[48]:(a)剪切带内形貌,(b)剪切带外形貌,(c)ZK60镁合金剪切带及其附近的微观形貌和不同位置的选区衍射图[42]

    Figure  20.  TEM micrograph of stainless steel after dynamic loading [48]: (a) microcrystalline structure inside bands, (b) large grains outside bands, (c) bright field image and selected area diffraction (SAD) pattern of the ZK60 magnesium alloy microstructure in shear region[42]

    图  21  (a)钢中剪切带及其附近区域的晶粒形貌及取向分布[46],(b)ECAP晶粒细化处理钛合金中剪切带及其附近区域微观形貌及取向分布[124]

    Figure  21.  (a) Grain morphology and orientation distribution of shear band and its vicinity in steel[46], (b) microstructure and orientation distribution of shear band and its vicinity in ECAP grain refinement titanium alloy[124]

    图  22  绝热剪切带产生之前Ti-6Al-4V试样内出现的再结晶晶粒及其对应的选区衍射图[126](a);钛合金试样剪切带完全形成前试样的整体(b)和局部(c)形貌[124]

    Figure  22.  Recrystallized grains in Ti-6Al-4V before adiabatic shear band and their corresponding selected area diffractionpatterns[126] (a); whole (b) and microstructure (c) of the shear band morphology for ECAP titanium alloy[124]

    表  1  基于功热转化理论的绝热温升计算结果

    Table  1.   Calculation results of adiabatic temperature rise based on thermomechanical conversion

    MaterialDynamic test methodTaylor-Quinney coefficientShear band width/μmTheoretical temperature rise/K
    4340 steel[31]Torsion1.020–601 100
    AISI 304L stainless steel[48]Hat-shaped shear0.9101 200
    Ti-6Al-4V[34]Torsion1.0852
    Ti-6Al-4V[33]Double shear0.96.51 460
    Ti-6Al-4V[32]Shear-compression1.0180
    AM50 magnesium alloy[32]Shear-compression1.035
    AMX602 magnesium alloy[36]Compression0.9661 000
    ZK60 magnesium alloy[42]Compression0.9365
    7003-T4 aluminium alloy[35]Compression0.940–110272–409
    Tungsten[37]Compression0.9100
    Ultrafine-grained pure titanium[38]Hat-shaped shear0.9650
    Ultrafine-grained pure iron[39]Compression0.9100
    Ultrafine-grained magnesium alloy[40]Compression0.967
    下载: 导出CSV

    表  2  功热转化系数研究总结

    Table  2.   Research summary on Taylor-Quinney coefficient

    MaterialLoading method
    Strain rate/(103 s−1)Sensor typeTemperature rise/Kβ
    Ta-2.5%W[50]Compression3 InSb630.68
    Ta[51]Shear-compression4.2HgCdTe > 801.00
    Mg[52]Shear-compression
    1.8–3.7
    HgCdTe < 50.10–0.30
    AZ31 magnesium alloy[52]Shear-compression
    2–4
    HgCdTe250.20–0.80
    α-Ti[53]Compression2InSb/HgCdTe870.55–0.66
    α-Ti[53]Shear-compression3InSb/HgCdTe870.55–0.66
    β-Ti[53]Compression2InSb/HgCdTe600.27–0.43
    β-Ti[53]Shear-compression2.0–3.5InSb/HgCdTe600.27–0.43
    Pure titanium[54]Shear-compression13InSb50–900.25–0.55
    Ti-6Al-4V[32]Shear-compression3HgCdTe650.40
    OFHC copper[55]Compression4.4InSb/
    HgCdTe
    400.30–0.40
    7075-T651 aluminium alloy[56]Compression
    1.1–4.2
    HgCdTe10–700.30–0.96
    2024-T3 aluminium alloy[57]Compression3HgCdTe0.30–0.50
    Aluminium[58]Compression3.5–5
    InSb/
    HgCdTe
    0.45–0.65
    Ni200[58]Compression
    3.3–4.7
    InSb/
    HgCdTe
    0.35–0.65
    下载: 导出CSV

    表  3  绝热温升实验测量结果

    Table  3.   Previous measurements of adiabatic temperature rise

    MaterialDynamic loading methodStrain rate/(103 s−1)Observed spot size/
    (mm × mm)
    Experimental
    temperature rise/K
    HY-100 steel[103]Torsion1.30.035 × 0.120425–595
    AISI 4340 steel[105]Torsion10.017 × 0.053460–570
    C-300 steel[107]Mode Ⅰ fracture0.10 × 0.10630
    C-300 steel[106]Mode Ⅱ fracture0.08 × 0.08900–1400
    Ti-6Al-4V[106]Mode Ⅱ fracture0.08 × 0.08450
    Ti-6Al-4V[26]Torsion10.017 × 0.053440–550
    Ti-6Al-4V[28]Tension10.05 × 0.05200
    Ti-6Al-4V[108]Torsion1–20.043 × 0.0431080
    Ti-6Al-4V[114]Shear-compression0.15 × 0.15250
    Ti-6Al-4V[32]Shear-compression30.045 × 0.045300
    AM50
    magnesium alloy[32]
    Shear-compression30.045 × 0.045110
    Ta-2
    titanium alloy[111]
    Hat-shaped shear1.4 × 1.4160
    Austenitic stainless steel[109]Tension3350
    Pure titanium[54]Shear-compression130.15 × 0.15350–650
    下载: 导出CSV
  • [1] MOLINARI A, MUSQUAR C, SUTTER G. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling [J]. International Journal of Plasticity, 2002, 18(4): 443–459. doi: 10.1016/S0749-6419(01)00003-1
    [2] 王升平. TC4钛合金锯齿形切屑绝热剪切带的微观组织和显微硬度变化 [J]. 中国机械工程, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024

    WANG S P. Investigation on microstructure and microhardness of adiabatic shear band of saw-tooth chip in machining TC4 alloy [J]. China Mechanical Engineering, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024
    [3] SEMIATIN S L, LAHOTI G D. Deformation and unstable flow in hot forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si [J]. Metallurgical Transactions A, 1981, 12(10): 1705–1717. doi: 10.1007/BF02643753
    [4] ME-BAR Y, SHECHTMAN D. On the adiabatic shear of Ti-6Al-4V ballistic targets [J]. Materials Science and Engineering, 1983, 58(2): 181–188. doi: 10.1016/0025-5416(83)90044-7
    [5] MURR L E, RAMIREZ A C, GAYTAN S M, et al. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets [J]. Materials Science and Engineering: A, 2009, 516(1/2): 205–216. doi: 10.1016/j.msea.2009.03.051
    [6] WALLEY S M. Shear localization: a historical overview [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2629–2654. doi: 10.1007/s11661-007-9271-x
    [7] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
    [8] BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories and applications [M]. Oxford: Pergamon Press, 1992.
    [9] DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. 2nd ed. Amsterdam: Elsevier, 2012.
    [10] WRIGHT T W. The physics and mathematics of adiabatic shear bands [M]. Cambridge: Cambridge University Press, 2002.
    [11] MEYERS M A. Shear bands (thermoplastic shear instabilities) [M]//MEYERS M A. Dynamic Behavior of Materials. John Wiley & Sons Inc., 1994: 448–487.
    [12] ANTOLOVICH S D, ARMSTRONG R W. Plastic strain localization in metals: origins and consequences [J]. Progress in Materials Science, 2014, 59: 1–160. doi: 10.1016/j.pmatsci.2013.06.001
    [13] TIMOTHY S P. The structure of adiabatic shear bands in metals: a critical review [J]. Acta Metallurgica, 1987, 35(2): 301–306. doi: 10.1016/0001-6160(87)90238-0
    [14] DUAN C Z, WANG M J. A review of microstructural evolution in the adiabatic shear bands induced by high speed machining [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(2): 97–112. doi: 10.1007/s40195-013-2001-z
    [15] XU Y B, ZHANG J H, BAI Y L, et al. Shear localization in dynamic deformation: microstructural evolution [J]. Metallurgical and Materials Transactions A, 2008, 39(4): 811–843. doi: 10.1007/s11661-007-9431-z
    [16] DUFFY J. Experimental studies of shear band formation through temperature measurements and high speed photography [J]. Journal de Physique Ⅳ, 1991, 1(C3): 645–652. doi: 10.1051/jp4:1991390
    [17] RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1/2): 177–185. doi: 10.1007/s10704-010-9475-8
    [18] 钟杰, 叶雁, 李作友. 红外热成像技术测量绝热剪切带温度的综述 [J]. 高能量密度物理, 2010(1): 43–48.

    ZHONG J, YE Y, LI Z Y. Review of measurement of adiabatic shear band temperature by infrared thermal imaging [J]. High Energy Density Physics, 2010(1): 43–48.
    [19] 谭成文, 王富耻, 李树奎. 绝热剪切变形局部化研究进展及发展趋势 [J]. 兵器材料科学与工程, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016

    TAN C W, WANG F C, LI S K. Progresses and trends in researches on adiabatic shear deformation [J]. Ordnance Material Science and Engineering, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016
    [20] 索涛, 汪存显, 杭超, 等. 材料动态变形中的绝热剪切带研究现状 [J]. 机械科学与技术, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101

    SUO T, WANG C X, HANG C, et al. The research status of adiabatic shear band in dynamic deformation [J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101
    [21] 肖大武, 李英雷, 蔡灵仓. 绝热剪切研究进展 [J]. 实验力学, 2010, 25(4): 463–475.

    XIAO D W, LI Y L, CAI L C. Progress in research on adiabatic shearing [J]. Journal of Experimental Mechanics, 2010, 25(4): 463–475.
    [22] 杨扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001

    YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001
    [23] RECHT R F. Catastrophic thermoplastic shear [J]. Journal of Applied Mechanics, 1964, 31(2): 189–193. doi: 10.1115/1.3629585
    [24] MASON J J, ROSAKIS A J, RAVICHANDRAN G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar [J]. Mechanics of Materials, 1994, 17(2/3): 135–145. doi: 10.1016/0167-6636(94)90054-X
    [25] RITTEL D. On the conversion of plastic work to heat during high strain rate deformation of glassy polymers [J]. Mechanics of Materials, 1999, 31(2): 131–139. doi: 10.1016/S0167-6636(98)00063-5
    [26] LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. doi: 10.1016/S0022-5096(98)00044-1
    [27] HODOWANY J, RAVICHANDRAN G, ROSAKIS A J, et al. Partition of plastic work into heat and stored energy in metals [J]. Experimental Mechanics, 2000, 40(2): 113–123. doi: 10.1007/BF02325036
    [28] MACDOUGALL D A S, HARDING J. The measurement of specimen surface temperature in high-speed tension and torsion tests [J]. International Journal of Impact Engineering, 1998, 21(6): 473–488. doi: 10.1016/S0734-743X(98)00007-4
    [29] TAYLOR G I, QUINNEY H. The latent energy remaining in a metal after cold working [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 143(849): 307–326. doi: 10.1098/rspa.1934.0004
    [30] RITTEL D, ZHANG L H, OSOVSKI S. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 96–114. doi: 10.1016/j.jmps.2017.06.016
    [31] GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part I: direct observation of strain localization and energy dissipation measurements [J]. Mechanics of Materials, 1988, 7(1): 59–71. doi: 10.1016/0167-6636(88)90006-3
    [32] RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys [J]. Mechanics of Materials, 2008, 40(8): 629–635. doi: 10.1016/j.mechmat.2008.03.002
    [33] GUO Y Z, LI Y L. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. doi: 10.1016/S0894-9166(12)60027-5
    [34] BAI Y L, XUE Q, XU Y B, et al. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials, 1994, 17(2/3): 155–164. doi: 10.1016/0167-6636(94)90056-6
    [35] WU X D, LI L X, LIU W H, et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting [J]. Materials Science and Engineering: A, 2018, 732: 91–98. doi: 10.1016/j.msea.2018.06.087
    [36] SHEN J, KONDOH K, JONES T L, et al. Effect of strain rate on the mechanical properties of magnesium alloy AMX602 [J]. Materials Science and Engineering: A, 2016, 649: 338–348. doi: 10.1016/j.msea.2015.10.022
    [37] WEI Q, KECSKES L J, RAMESH K T. Effect of low-temperature rolling on the propensity to adiabatic shear banding of commercial purity tungsten [J]. Materials Science and Engineering: A, 2013, 578: 394–401. doi: 10.1016/j.msea.2013.04.109
    [38] LI Z Z, WANG B F, ZHAO S T, et al. Dynamic deformation and failure of ultrafine-grained titanium [J]. Acta Materialia, 2017, 125: 210–218. doi: 10.1016/j.actamat.2016.11.041
    [39] WEI Q, KECSKES L, JIAO T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Materialia, 2004, 52(7): 1859–1869. doi: 10.1016/j.actamat.2003.12.025
    [40] MALIK A, WANG Y W, CHENG H W, et al. Microstructural evolution of ultra-fine grained Mg-6.62Zn-0.6Zr alloy on the basis of adiabatic rise in temperature under dynamic loading [J]. Vacuum, 2019, 168: 108810. doi: 10.1016/j.vacuum.2019.108810
    [41] XU Z J, LIU Y, HU H Z, et al. Determination of shear behavior and constitutive modeling of the 603 steel over wide temperature and strain rate ranges [J]. Journal of the Mechanics and Physics of Solids, 2019, 129: 184–204. doi: 10.1016/j.jmps.2019.05.005
    [42] JIANG L H, YANG Y, WANG Z, et al. Microstructure evolution within adiabatic shear band in peak aged ZK60 magnesium alloy [J]. Materials Science and Engineering: A, 2018, 711: 317–324. doi: 10.1016/j.msea.2017.10.111
    [43] WANG X B. Temperature distribution in adiabatic shear band for ductile metal based on Johnson-Cook and gradient plasticity models [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(2): 333–338. doi: 10.1016/S1003-6326(06)60057-5
    [44] MEYERS M A, SUBHASH G, KAD B K, et al. Evolution of microstructure and shear-band formation in α-hcp titanium [J]. Mechanics of Materials, 1994, 17(2/3): 175–193. doi: 10.1016/0167-6636(94)90058-2
    [45] MEYERS M A, ANDRADE U R, CHOKSHI A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper [J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2881–2893. doi: 10.1007/BF02669646
    [46] LINS J F C, SANDIM H R Z, KESTENBACH H J, et al. A microstructural investigation of adiabatic shear bands in an interstitial free steel [J]. Materials Science and Engineering: A, 2007, 457(1/2): 205–218. doi: 10.1016/j.msea.2006.12.019
    [47] HINES J A, VECCHIO K S. Recrystallization kinetics within adiabatic shear bands [J]. Acta Materialia, 1997, 45(2): 635–649. doi: 10.1016/S1359-6454(96)00193-0
    [48] MEYERS M A, XU Y B, XUE Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia, 2003, 51(5): 1307–1325. doi: 10.1016/S1359-6454(02)00526-8
    [49] PÉREZ-PRADO M T, HINES J A, VECCHIO K S. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys [J]. Acta Materialia, 2001, 49(15): 2905–2917. doi: 10.1016/S1359-6454(01)00215-4
    [50] KAPOOR R, NEMAT-NASSER S. Determination of temperature rise during high strain rate deformation [J]. Mechanics of Materials, 1998, 27(1): 1–12. doi: 10.1016/S0167-6636(97)00036-7
    [51] RITTEL D, BHATTACHARYYA A, POON B, et al. Thermomechanical characterization of pure polycrystalline tantalum [J]. Materials Science and Engineering: A, 2007, 447(1/2): 65–70. doi: 10.1016/j.msea.2006.10.064
    [52] GHOSH D, KINGSTEDT O T, RAVICHANDRAN G. Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy [J]. Metallurgical and Materials Transactions A, 2017, 48(1): 14–19. doi: 10.1007/s11661-016-3825-8
    [53] ZHANG L H, RITTEL D, OSOVSKI S. Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys [J]. Materials Science and Engineering: A, 2018, 729: 94–101. doi: 10.1016/j.msea.2018.05.007
    [54] GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. doi: 10.1016/j.jmps.2019.103811
    [55] NIETO-FUENTES J C, RITTEL D, OSOVSKI S. On a dislocation-based constitutive model and dynamic thermomechanical considerations [J]. International Journal of Plasticity, 2018, 108: 55–69. doi: 10.1016/j.ijplas.2018.04.012
    [56] ZHANG T, GUO Z R, YUAN F P, et al. Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology [J]. Acta Mechanica Sinica, 2018, 34(2): 327–333. doi: 10.1007/s10409-017-0673-8
    [57] RAVICHANDRAN G, ROSAKIS A J, HODOWANY J, et al. On the conversion of plastic work into heat during high-strain-rate deformation [J]. AIP Conference Proceedings, 2002, 620(1): 557–562. doi: 10.1063/1.1483600
    [58] NIETO-FUENTES J C, OSOVSKI S, VENKERT A, et al. Reassessment of the dynamic thermomechanical conversion in metals [J]. Physical Review Letters, 2019, 123(25): 255502. doi: 10.1103/PhysRevLett.123.255502
    [59] BEVER M B, HOLT D L, TITCHENER A L. The stored energy of cold work [J]. Progress in Materials Science, 1973, 17: 5–177. doi: 10.1016/0079-6425(73)90001-7
    [60] LIEOU C K C, MOURAD H M, BRONKHORST C A. Strain localization and dynamic recrystallization in polycrystalline metals: thermodynamic theory and simulation framework [J]. International Journal of Plasticity, 2019, 119: 171–187. doi: 10.1016/j.ijplas.2019.03.005
    [61] LANGER J S, BOUCHBINDER E, LOOKMAN T. Thermodynamic theory of dislocation-mediated plasticity [J]. Acta Materialia, 2010, 58(10): 3718–3732. doi: 10.1016/j.actamat.2010.03.009
    [62] 贾力, 方肇洪, 钱兴华. 高等传热学[M]. 北京: 高等教育出版社, 2003.

    JIA L, FANG Z H, QIAN X H. Advanced heat transfer [M]. Beijing: Higher Education Press, 2003.
    [63] NEMAT-NASSER S, ISAACS J B, LIU M Q. Microstructure of high-strain, high-strain-rate deformed tantalum [J]. Acta Materialia, 1998, 46(4): 1307–1325. doi: 10.1016/S1359-6454(97)00746-5
    [64] LI Z Z, ZHAO S T, WANG B F, et al. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium [J]. Acta Materialia, 2019, 181: 408–422. doi: 10.1016/j.actamat.2019.09.011
    [65] 侯镇冰, 何绍杰, 李恕先. 固体热传导[M]. 上海: 上海科学技术出版社, 1984.

    HOU Z B. Solid heat conduction [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1984.
    [66] LEWANDOWSKI J J, GREER A L. Temperature rise at shear bands in metallic glasses [J]. Nature Materials, 2006, 5(1): 15–18. doi: 10.1038/nmat1536
    [67] ECKERT E R G. Heat and mass transfer [M]. 2nd ed. New York: McGraw-Hill, 1959.
    [68] CUSHMAN-ROISIN B, BECKERS J M. Diffusive processes [J]. International Geophysics, 2011, 101: 131–161. doi: 10.1016/B978-0-12-088759-0.00005-5
    [69] CARSLAW H S, JAEGER J C. Conduction of heat in solids [M]. 2nd ed. Oxford: Oxford University Press, 1959.
    [70] WANG Q, OLIVIER H, EINHOFF J, et al. Influence of test model material on the accuracy of transient heat transfer measurements in impulse facilities [J]. Experimental Thermal and Fluid Science, 2019, 104: 59–66. doi: 10.1016/j.expthermflusci.2019.02.013
    [71] WRIGHT W J, SCHWARZ R B, NIX W D. Localized heating during serrated plastic flow in bulk metallic glasses [J]. Materials Science and Engineering: A, 2001, 319/320/321: 229–232. doi: 10.1016/S0921-5093(01)01066-8
    [72] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006.
    [73] BAI Y L. Thermo-plastic instability in simple shear [J]. Journal of the Mechanics and Physics of Solids, 1982, 30(4): 195–207. doi: 10.1016/0022-5096(82)90029-1
    [74] CLIFTON R J, DUFFY J, HARTLEY K A, et al. On critical conditions for shear band formation at high strain rates [J]. Scripta Metallurgica, 1984, 18(5): 443–448. doi: 10.1016/0036-9748(84)90418-6
    [75] WALTER J W. Numerical experiments on adiabatic shear band formation in one dimension [J]. International Journal of Plasticity, 1992, 8(6): 657–693. doi: 10.1016/0749-6419(92)90023-6
    [76] WRIGHT T W, BATRA R C. The initiation and growth of adiabatic shear bands [J]. International Journal of Plasticity, 1985, 1(3): 205–212. doi: 10.1016/0749-6419(85)90003-8
    [77] WRIGHT T W. Shear band susceptibility: work hardening materials [J]. International Journal of Plasticity, 1992, 8(5): 583–602. doi: 10.1016/0749-6419(92)90032-8
    [78] GUO Y Z, LI Y L, PAN Z, et al. A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials [J]. Mechanics of Materials, 2010, 42(11): 1020–1029. doi: 10.1016/j.mechmat.2010.09.002
    [79] JOSHI S P, RAMESH K T. Rotational diffusion and grain size dependent shear instability in nanostructured materials [J]. Acta Materialia, 2008, 56(2): 282–291. doi: 10.1016/j.actamat.2007.09.031
    [80] ZHOU F, WRIGHT T W, RAMESH K T. A numerical methodology for investigating the formation of adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(5): 904–926. doi: 10.1016/j.jmps.2005.12.002
    [81] ZHOU F, WRIGHT T W, RAMESH K T. The formation of multiple adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1376–1400. doi: 10.1016/j.jmps.2006.01.006
    [82] 杨扬, 程信林, 安宁龙. TB2钛合金绝热剪切行为的数值模拟 [J]. 中国有色金属学报, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003

    YANG Y, CHENG X L, AN N L. Numerical simulation on adiahatic shearing behavior of TB2 [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003
    [83] ZHOU M, RAVICHANDRAN G, ROSAKIS A J. Dynamically propagating shear bands in impact-loaded prenotched plates-Ⅱ. Numerical simulations [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 1007–1021, 1023–1032. doi: 10.1016/0022-5096(96)00004-X
    [84] CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889–1909. doi: 10.1016/j.jmps.2004.02.013
    [85] BRONKHORST C A, CERRETA E K, XUE Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel [J]. International Journal of Plasticity, 2006, 22(7): 1304–1335. doi: 10.1016/j.ijplas.2005.10.002
    [86] XU Z J, DING X Y, ZHANG W Q, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique [J]. International Journal of Impact Engineering, 2017, 101: 90–104. doi: 10.1016/j.ijimpeng.2016.11.012
    [87] XU Z J, LIU Y, SUN Z Y, et al. On shear failure behaviors of an armor steel over a large range of strain rates [J]. International Journal of Impact Engineering, 2018, 118: 24–38. doi: 10.1016/j.ijimpeng.2018.04.003
    [88] 许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445

    XU Z J, DING X Y, ZHANG W Q, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445
    [89] 张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107

    ZHANG W Q, XU Z J, SUN Z Y, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107
    [90] ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. doi: 10.1016/j.mechmat.2019.103102
    [91] 陈浩森, 郭亚洲, 朱盛鑫, 等. 多点式高速红外测温系统研制 [J]. 实验力学, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220

    CHEN H S, GUO Y Z, ZHU S X, et al. On the development of multi-point high speed infrared temperature measurement system [J]. Journal of Experimental Mechanics, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220
    [92] KENDALL M J, FROUD R F, SIVIOUR C R. Novel temperature measurement method & thermodynamic investigations of amorphous polymers during high rate deformation [J]. Polymer, 2014, 55(10): 2514–2522. doi: 10.1016/j.polymer.2014.03.058
    [93] RABIN Y, RITTEL D. A model for the time response of solid-embedded thermocouples [J]. Experimental Mechanics, 1999, 39(2): 132–136. doi: 10.1007/BF02331116
    [94] CHOU S C, ROBERTSON K D, RAINEY J H. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics [J]. Experimental Mechanics, 1973, 13(10): 422–432. doi: 10.1007/BF02324886
    [95] RITTEL D. Transient temperature measurement using embedded thermocouples [J]. Experimental Mechanics, 1998, 38(2): 73–78. doi: 10.1007/BF02321647
    [96] SASSI S, TARFAOUI M, BEN YAHIA H. In-situ heat dissipation monitoring in adhesively bonded composite joints under dynamic compression loading using SHPB [J]. Composites Part B: Engineering, 2018, 154: 64–76. doi: 10.1016/j.compositesb.2018.07.039
    [97] CAO B, IWAMOTO T. An experimental investigation on rate dependency of thermomechanical and Stress-induced martensitic transformation behavior in Fe-28Mn-6Si-5Cr shape memory alloy under compression [J]. International Journal of Impact Engineering, 2019, 132: 103284. doi: 10.1016/j.ijimpeng.2019.04.026
    [98] CAO B, IWAMOTO T. A new method to measure volume resistivity during tension for strain rate sensitivity in deformation and transformation behavior of Fe-28Mn-6Si-5Cr shape memory alloy [J]. International Journal of Mechanical Sciences, 2018, 146/147: 445–454. doi: 10.1016/j.ijmecsci.2017.09.020
    [99] SHOCKEY D A, KALTHOFF J F, KLEMM W, et al. Simultaneous measurements of stress intensity and toughness for fast-running cracks in steel [J]. Experimental Mechanics, 1983, 23(2): 140–145. doi: 10.1007/BF02320401
    [100] RITTEL D. Experimental investigation of transient thermoelastic effects in dynamic fracture [J]. International Journal of Solids and Structures, 1998, 35(22): 2959–2973. doi: 10.1016/S0020-7683(97)00352-1
    [101] AY H, YANG W J. Heat transfer and life of metal cutting tools in turning [J]. International Journal of Heat and Mass Transfer, 1998, 41(3): 613–623. doi: 10.1016/S0017-9310(97)00105-1
    [102] DEWES R C, NG E, CHUA K S, et al. Temperature measurement when high speed machining hardened mould/die steel [J]. Journal of Materials Processing Technology, 1999, 92/93: 293–301. doi: 10.1016/S0924-0136(99)00116-8
    [103] MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251–283. doi: 10.1016/0022-5096(88)90012-9
    [104] HARTLEY K A, DUFFY J, HAWLEY R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(3): 283–301. doi: 10.1016/0022-5096(87)90009-3
    [105] DUFFY J, CHI Y C. On the measurement of local strain and temperature during the formation of adiabatic shear bands [J]. Materials Science and Engineering: A, 1992, 157(2): 195–210. doi: 10.1016/0921-5093(92)90026-W
    [106] ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates–Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. doi: 10.1016/0022-5096(96)00003-8
    [107] GUDURU P R, RAVICHANDRAN G, ROSAKIS A J. Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding [J]. Physical Review E, 2001, 64(3): 036128. doi: 10.1103/PhysRevE.64.036128
    [108] RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading–adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. doi: 10.1016/j.mechmat.2007.08.002
    [109] SEIDT J D, KUOKKALA V T, SMITH J L, et al. Synchronous full-field strain and temperature measurement in tensile tests at low, intermediate and high strain rates [J]. Experimental Mechanics, 2017, 57(2): 219–229. doi: 10.1007/s11340-016-0237-z
    [110] 刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05

    LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperatureunder shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05
    [111] 付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004
    [112] GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. doi: 10.1103/PhysRevLett.122.015503
    [113] RITTEL D, RAVICHANDRAN G, VENKERT A, et al. The mechanical response of pure iron at high strain rates under dominant shear [J]. Materials Science and Engineering: A, 2006, 432(1/2): 191–201. doi: 10.1016/j.msea.2006.05.154
    [114] ZHU S X, GUO Y Z, RUAN Q C, et al. Formation of adiabatic shear band within Ti-6Al-4V: an in-situ study with high-speed photography and temperature measurement [J]. International Journal of Mechanical Sciences, 2020, 171: 105401. doi: 10.1016/j.ijmecsci.2019.105401
    [115] MACDOUGALL D A S, HARDING J. A constitutive relation and failure criterion for Ti6Al4V alloy at impact rates of strain [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(5): 1157–1185. doi: 10.1016/S0022-5096(98)00086-6
    [116] ZEHNDER A T, GUDURU P R, ROSAKIS A J, et al. Million frames per second infrared imaging system [J]. Review of Scientific Instruments, 2000, 71(10): 3762–3768. doi: 10.1063/1.1310350
    [117] REGEV A, RITTEL D. Simultaneous transient temperature sensing of impacted polymers using infrared detectors and thermocouples [J]. Experimental Mechanics, 2008, 48(5): 675–682. doi: 10.1007/s11340-007-9096-y
    [118] GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part Ⅱ: fractographic and metallographic observations [J]. Mechanics of Materials, 1988, 7(1): 73–87. doi: 10.1016/0167-6636(88)90007-5
    [119] NEMAT-NASSER S, CHANG S N. Compression-induced high strain rate void collapse, tensile cracking, and recrystallization in ductile single and polycrystals [J]. Mechanics of Materials, 1990, 10(1/2): 1–17. doi: 10.1016/0167-6636(90)90013-6
    [120] ANDRADE U, MEYERS M A, VECCHIO K S, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper [J]. Acta Metallurgica et Materialia, 1994, 42(9): 3183–3195. doi: 10.1016/0956-7151(94)90417-0
    [121] MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. doi: 10.1016/S0921-5093(01)01160-1
    [122] XU Y B, ZHONG W L, CHEN Y J, et al. Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy [J]. Materials Science and Engineering: A, 2001, 299(1/2): 287–295. doi: 10.1016/S0921-5093(00)01412-X
    [123] HWANG B, LEE S, KIM Y C, et al. Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing [J]. Materials Science and Engineering: A, 2006, 441(1/2): 308–320. doi: 10.1016/j.msea.2006.08.045
    [124] LIU S L, PAN Z L, ZHAO Y H, et al. Effect of strain rate on the mechanical properties of a gum metal with various microstructures [J]. Acta Materialia, 2017, 132: 193–208. doi: 10.1016/j.actamat.2017.04.052
    [125] LIU S L, GUO Y Z, PAN Z L, et al. Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal [J]. Journal of Materials Science & Technology, 2020, 54: 31–39. doi: 10.1016/j.jmst.2020.03.042
    [126] RITTEL D, LANDAU P, VENKERT A. Dynamic recrystallization as a potential cause for adiabatic shear failure [J]. Physical Review Letters, 2008, 101(16): 165501. doi: 10.1103/PhysRevLett.101.165501
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  4348
  • HTML全文浏览量:  992
  • PDF下载量:  105
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-04-02

目录

    /

    返回文章
    返回