绝热剪切变形中温升现象的研究进展

胡博 郭亚洲 魏秋明 索涛 李玉龙

胡博, 郭亚洲, 魏秋明, 索涛, 李玉龙. 绝热剪切变形中温升现象的研究进展[J]. 高压物理学报, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728
引用本文: 胡博, 郭亚洲, 魏秋明, 索涛, 李玉龙. 绝热剪切变形中温升现象的研究进展[J]. 高压物理学报, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728
ZHANG Guan-Ren. Breakdown of Ferroelectric Ceramics under Shock Loading[J]. Chinese Journal of High Pressure Physics, 1995, 9(1): 1-4 . doi: 10.11858/gywlxb.1995.01.001
Citation: HU Bo, GUO Yazhou, WEI Qiuming, SUO Tao, LI Yulong. Temperature Rise during Adiabatic Shear Deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728

绝热剪切变形中温升现象的研究进展

doi: 10.11858/gywlxb.20210728
基金项目: 国家自然科学基金(11672354,11922211);111引智计划(BP0719007)
详细信息
    作者简介:

    胡 博(1994-),男,硕士,主要从事金属材料绝热剪切失效研究. E-mail:hubo94@mail.nwpu.edu.cn

    通讯作者:

    郭亚洲(1981-),男,博士,教授,主要从事材料动态力学行为和实验技术研究. E-mail:guoyazhou@nwpu.edu.cn

  • 中图分类号: O347

Temperature Rise during Adiabatic Shear Deformation

  • 摘要: 材料温度升高是绝热剪切现象的重要特征,研究绝热剪切中的温升对于深入了解绝热剪切失效的形成机制和演化历程具有重要意义,同时对预测材料和结构的动态失效具有重要的实用价值。一般而言,绝热剪切过程中的温升可以分为3个阶段:均匀变形阶段的温升、剪切局部化引起的温升、剪切带形成后热传导引起绝热剪切带附近的温升。本文从理论计算、数值模拟、实验测量和微观组织演化4个方面对绝热剪切中的温升相关研究进行了综述。通过对已有文献的系统整理和总结,以期为开展后续绝热剪切失效相关研究工作给出一定的启发和参考。

     

  • 液体燃料抛撒成雾后能和空气形成爆炸性混合物。通常该爆炸性混合物有两种截然不同的化学反应模式:一种是速度缓慢的层流燃烧模式, 火焰-未反应燃料的相对速度约为1 m/s; 另一种是伴随着高温高压的高速(约2 km/s)化学反应模式, 称之为爆轰。与气相爆轰[1-5]相比, 气-液两相或气-液-固三相爆轰更复杂, 伴随液-固燃料的抛撒、破碎等物理过程, 其反应特征时间和反应区尺度远大于气相爆轰。相比于凝聚相炸药, 多相爆轰的容积能量密度要低很多, 但其质量能量密度却远超过一般凝聚相炸药。

    近年来, 关于多相爆轰的研究持续升温。一个主要原因是出于对燃料-空气炸药(Fuel-Air Explosive, FAE)的关注, 通过采用不同种类和配比的燃料, 寻找高能燃料以提高FAE的威力。另一方面, 是出于对工业生产中安全问题的考虑。煤矿中的煤尘-瓦斯-空气爆炸, 食品制药行业中的可燃粉尘-空气爆炸, 石油化工企业中的燃料-空气爆炸等多相爆轰现象都能造成重大的灾难性事故。

    国内已进行了很多关于多相爆轰的研究。刘光烈[6]设计了一台多相爆轰试验管, 并利用它测量了环氧丙烷-铝粉-空气混合物的爆轰压力和正压作用时间, 测量结果与外场试验结果基本一致。刘庆明等人[7]对多相FAE的分散、爆轰过程进行了光学测量, 并测量了FAE爆炸压力场, 分析了气-液-固多相爆轰的特征和压力波形的特点, 研究了冲击波峰值超压及比冲量随传播距离变化的规律。汤明钧[8]归纳总结了多相爆轰的特点, 并对影响多相爆轰的因素进行了分析。贵大勇等人[9]研究了典型液态燃料和固-液混合燃料配方对FAE爆轰性能的影响规律, 并对各典型液态燃料的FAE爆轰威力进行了排序。徐晓峰等人[10]以立式激波管为主要实验手段, 对4种燃料(C5H8.68、环氧丙烷、正己烷和癸烷)与空气混合物的云雾爆轰性能进行了较为系统的研究。姚干兵等人[11]采用烟迹技术, 在立式激波管中测定了环氧丙烷、90号汽油、硝酸异丙酯、庚烷、癸烷、戊二烯等几种燃料气-液两相云雾爆轰的胞格尺寸, 认为液滴的碎解、汽化过程以及燃烧区前导是控制气-液两相云雾爆轰的主要因素。陈默等人[12]在长为32.4 m、内径为0.199 m的大型长直水平管道中, 对环氧丙烷-铝粉-空气三相流云雾的爆燃转爆轰(Deflagration to Detonation, DDT)过程进行了实验研究, 实现了多相体系爆燃向爆轰转变的过程, 并测得其胞格尺寸。

    本研究以立式激波管为载体, 以RDX-混合燃料-空气三相体系为对象, 借助压力测试系统、烟熏技术, 进行爆轰波压力、速度和胞格尺寸的测量, 目的是获得气-液-固三相爆轰的相关参数, 以期了解多相爆轰波的结构及其传播规律。

    整套立式激波管设备由激波管管体、喷粉喷雾系统和点火系统组成。其结构如图 1所示。激波管内径为200 mm, 高5.4 m, 管体分为3个部分:主体部分, 长4 m; 底端为起爆端, 长0.7 m; 顶端为观察窗, 长0.7 m。不使用连着观察窗的4个喷头, 以防止实验中观察窗遭到破坏。故仅利用4.7 m的管体, 有效容积为147.6 L。喷粉喷雾系统由空气压缩机、储气罐、U型管储液储粉装置、喷头等组成。点火系统由延时点火器、起爆线、雷管基座等组成。

    图  1  实验设备结构图
    Figure  1.  The structure of experimental device

    实验开始前, 先将烟熏板置于激波管内指定位置(见图 1), 安装好起爆装置; 然后向U型管内注入燃料和粉尘, 开启空气压缩机, 向储气罐内注入一定量的压缩空气; 最后开启压力采集系统, 设置点火延时器。准备就绪后, 打开电磁阀使压缩空气冲出, 夹带着液体和粉尘的空气由喷头抛撒进入激波管, 至云团达到最佳状态点火, 记录压力曲线并取下烟熏板保存。点火延迟时间是指从开启电磁阀到点火的这段时间。根据多次重复实验, 液体-空气云团在电磁阀开启1 s后发展到最大, 故将点火延迟时间取为1 s。充入储气罐中的气压值经过多次尝试, 取0.4 MPa时, 能在500 ms内将U型管内的液体、粉尘喷撒干净[10]。为确保将U型管内粉尘吹干净, 设定电磁阀开启持续时间为1 s。电磁阀关闭后即刻开始点火。即吹粉时间为1 s, 点火延迟时间也为1 s。

    本研究采用了两种液体燃料:一种是90#溶剂油, 另一种是90#溶剂油和硝酸异丙酯(IPN)按质量比4:1制成的混合物。液体燃料和RDX粉尘交叉注入26个U型管中, 即:若液体燃料注入某一个U型管, 则RDX粉尘注入其对面和临近的U型管中。除特别说明外, 起爆物均为一发雷管加3 g塑性炸药, 起爆能量为23.52 kJ。

    测试系统由压力测试系统、胞格记录装置等组成。其中, 压力测试系统由传感器、电荷放大器、数据采集卡、微机等组成。采用PCB压电式石英传感器, 编号为S1~S8, 分布如图 1所示。每两个传感器间距为0.5 m, 传感器S2距离起爆端1.4 m。

    胞格记录装置主要由烟熏板、固定支架组成。其中, 烟熏板为半圆形铝板, 使用前将板清洗干净并晾干, 表面涂一层很薄的机油, 用煤油灯烟熏黑其内表面, 出现一层薄而均匀的烟灰, 用0.4 MPa压缩空气吹之, 烟灰不脱落者为合格。烟熏板用支架固定在法兰上, 板中心距离上法兰1.5 m。

    表 1给出了各传感器的具体位置和参数。经过多次测试发现, 距离起爆点较近处压力大, 较远处压力稍小。故将量程大的传感器安置在激波管底端附近, 量程小的传感器安置在管体顶端附近。图 2为典型的爆轰波压力-时间曲线, 传感器同时记录了各测试点处的爆压和爆轰波到达该点的时刻, 以两个传感器之间的距离除以爆轰波到达的时间差, 即可推算出爆轰波在这两个传感器间的平均速度。

    表  1  传感器位置和量程
    Table  1.  Position and range of pressure sensors
    No. Distance from the
    detonation point/
    (m)
    Maximum
    pressure/
    (MPa)
    S2 1.4 15.330
    S3 1.9 15.270
    S4 2.4 6.784
    S5 2.9 6.757
    S6 3.4 6.220
    S7 3.9 6.000
    下载: 导出CSV 
    | 显示表格
    图  2  典型压力时间曲线
    Figure  2.  Typical pressure-time curves

    实验所用RDX为白品造粒, 经BT-9300S粒度分析仪测得其平均粒径(D50)为85 μm。90#溶剂油和IPN的理化性质如表 2所示, 二者按质量比4:1制成的混合物密度为0.736 g/cm3。如前所述, 液体燃料和RDX粉尘是交叉注入26个U型管的, 即13个装液体, 13个装粉尘。经多次重复实验得到, 当单个U型管中加入4 mL、即总共加入52 mL燃料时, 刚好发生爆轰, 故纯液体燃料的点火浓度下限为260 g/m3。在此基础上, 改变RDX粉尘的加入量, 每次向单个U型管中分别加入1、2、3、4、5 g, 对应粉尘浓度依次为88、176、264、352、440 g/m3。在激波管顶部加观察窗, 记录云雾形成、爆轰过程, 得到如图 3所示的时序照片。

    表  2  90#溶剂油和IPN的理化性质
    Table  2.  Physicochemical properties of 90# solvent oil and IPN
    Liquid
    fuel
    Density/
    (g/cm3)
    Composition Boiling
    point/
    (℃)
    Flash
    point/
    (℃)
    Ignition
    temperature/
    (℃)
    Upper
    explosive
    limit/(%)
    Lower
    explosive
    limit/(%)
    90# solvents oil 0.65 C5H12, C6H14 35-60 13 228 5.9 1.1
    IPN 1.04 C3H7NO3 98-102 11 - 100 2
    下载: 导出CSV 
    | 显示表格
    图  3  三相云雾爆轰时序照片
    Figure  3.  A series of experimental photos of three-phase cloud detonation

    不同配比的RDX-90#溶剂油及RDX-混合物的爆轰压力(简称爆压)随距起爆点距离的变化趋势如图 4图 5所示, 图中:+n g RDX(n=0, 2, 5)意为每次向单个U型管中加入n g RDX, 下同。

    图  4  不同RDX添加量的RDX-90#溶剂油体系的爆压随距离变化趋势
    Figure  4.  Detonation pressure with distance for RDX-90# solvent oil with various RDX additive amounts
    图  5  不同RDX添加量的RDX-混合溶剂体系的爆压随距离变化趋势
    Figure  5.  Detonation pressure with distance for RDX-mixed fuel with various RDX additive amounts

    多相爆轰为不稳定爆轰, 爆轰波的压力、速度并非一成不变。由图 5图 6可知, 同一组实验中, 随着爆轰波的传播, 爆轰压力的波动较大, 整体呈下降趋势。分析其原因, 可能是因为液滴、粉尘喷出之后, 较大颗粒的液滴、粉尘部分沉降, 出现激波管底部粉尘浓度较大、顶部粉尘浓度较小的情况, 所以压力呈现递减趋势。但不论是纯溶剂油还是混合溶剂体系, 其气云爆轰的最低压力均在5 MPa左右, 比一般碳氢液体燃料-空气的气云爆轰压力高出很多。这主要是因为90#溶剂油的挥发性较强, 且含碳量较高, 能量密度较大, 与空气形成爆炸性混合物后, 反应较为充分。

    图  6  不同RDX添加量的RDX-90#溶剂油体系的爆速随距离变化趋势
    Figure  6.  Detonation velocity with distance for RDX-90# solvent oil with various RDX additive amounts

    图 4图 5得知, 随着RDX粉尘浓度的增加, RDX-90#溶剂油和RDX-混合溶剂三相体系的平均爆压均呈整体上升趋势, 相比而言, 前者爆压的上升趋势不如后者明显。

    不同配比的RDX-90#溶剂油、RDX-混合溶剂的爆轰速度(简称爆速)随距起爆点距离的变化趋势如图 6图 7所示。

    图  7  不同RDX添加量的RDX-混合溶剂体系的爆速随距离变化趋势
    Figure  7.  Detonation velocity with distance for RDX-mixed fuel with various RDX additive amounts

    距离起爆点较近(1.5~2.5 m)处, 爆速起伏上升; 距离大于2.5 m以后, 爆速趋于稳定, 并达到最大值。从图 6图 7中可以得知, 随着RDX粉尘浓度的增加, RDX-90#溶剂油和RDX-混合溶剂的爆速均呈现整体上升的趋势。

    图 8为RDX-燃料-空气三相体系在距离起爆点3.15 m处的平均爆速随RDX质量分数的变化趋势。无论何种配比, RDX-90#溶剂油体系的平均爆速均不小于RDX-混合溶剂。这一点也不难理解, 由表 2可知, 90#溶剂油的密度较小, 沸点较低, 饱和蒸汽压较高, 容易挥发汽化, 在激波阵面到达以前, 体系中就有一定的燃料蒸汽存在, 故而其破碎雾化的时间较短, 爆轰压力和爆轰速度也较大。

    图  8  距离起爆点3.15 m处, 爆速随RDX含量的变化趋势
    Figure  8.  Detonation velocity with the mass fraction of RDX at the distance of 3.15 m

    由于90#溶剂油和IPN混合物原本的爆速、爆压就比较高, 故对RDX是否参与了爆轰有所怀疑, 设计如下实验进行验证。其它条件(如:加入液体和粉尘的量、电磁阀开启持续时间、起爆能量等)不变, 将液体燃料换成环氧丙烷(Propylene Oxide, PO), 且注入U型管后不进行静置, 不待其发生汽化, 直接进行抛撒起爆, 进行3次重复实验。传感器S3~S7的参数和位置见表 1

    单纯注入PO时, 压力-时间曲线如图 9所示。由图 9可以看出, 波形出现双峰结构, 说明云团内发生了二次反应, 且二次反应比第一次猛烈。第一和第二个峰之间正是液滴发生破碎雾化的过程, 特征时间Δt=0.2 ms。从爆压和爆速(1 km/s以下)的数据来看, PO-空气体系并没有发生爆轰。

    图  9  PO-空气两相爆燃压力-时间曲线
    Figure  9.  Deflagration pressure of PO-air with time

    加入RDX后, 压力-时间曲线如图 10所示。由图 10可以看出, 爆压达到5~6 MPa, 爆速达到1.5 km/s以上。加入RDX粉尘之后, PO由爆燃达到了爆轰, 压力和速度都有很大突跃, 可见RDX确实参与了爆轰, 而不仅仅是燃烧。

    图  10  RDX-PO-空气三相爆压-时间曲线
    Figure  10.  Detonation pressure of RDX-PO-air with time
    3.4.1   胞格尺寸和长宽比

    所谓爆轰胞格就是爆轰波在管道内传播过程中, 横波、入射波、马赫杆三波交合点的运动轨迹。爆轰的胞格尺寸是判断可燃混合气体的最基本特征参数, 爆轰参数诸如临界管径、爆轰极限以及直接气爆能量等, 都可以通过胞格尺寸进行预测[13]。如图 11所示, 爆轰波从左至右传播, 其前导冲击波是由马赫杆和入射冲击波交替组合的波阵面。自1959年Denisov和Troshin发现爆轰波具有胞格结构以来, 实验中都使用烟迹技术观测胞格结构。本研究所用的烟迹载体为半圆形铝制板, 利用支架将其固定在激波管的内壁上, 以最大限度减少对爆轰波传播过程的干扰。

    图  11  胞格结构示意图[13]
    Figure  11.  Structure of detonation cell[13]

    图 12是用上述铝制板得到的RDX-燃料-空气三相爆轰的典型胞格, 其中L为胞格长度, λ为胞格宽度。爆轰波从左至右传播, 图 12中用红色线标记了几个典型的胞格。与气相爆轰的胞格(见图 11)相比, 三相爆轰胞格的长宽比(L/λ)要小得多, 有些胞格长、宽相等甚至长比宽还要小。

    图  12  RDX-燃料-空气三相爆轰的典型胞格照片
    Figure  12.  Photo of RDX- fuel-air detonation cells

    多相爆轰为非均相爆轰, 胞格尺寸、形状不统一, 波动性较大(见图 12)。经过重复实验, 取胞格尺寸(此处特指胞格的宽度)平均值, 并利用数据处理软件计算其误差线, 如图 13所示。

    图  13  RDX-90#溶剂油-空气和RDX-混合溶剂-空气体系爆轰胞格尺寸随RDX质量分数的变化趋势
    Figure  13.  Detonation cell width with mass fraction of RDX for RDX-90# solvent oil-air and RDX-mixed fuel-air system

    图 13分别为RDX-90#溶剂油-空气体系及RDX-混合溶剂-空气体系的爆轰胞格尺寸随RDX质量分数的变化趋势。两种体系相比, 单纯90#溶剂油体系的平均胞格尺寸比加入IPN的混合溶剂体系要大, 也即前者的临界起爆能量较高。这一点很好解释, 因为IPN中带有-O-NO2基团, 相当于“敏化剂”, 降低了体系的直接起爆能量。另外, 两种体系的爆轰胞格尺寸都在RDX质量分数为55%左右时达到最大, 也即当RDX粉尘质量与液体燃料质量之比为55:45时, 体系最不敏感, 需要较大的能量才能起爆。在爆轰过程中, 液滴、粉尘的破碎相变过程需要吸收较多能量。RDX粉尘的比表面积较大, 增加的RDX粉尘自身蕴含的能量不足以抵消加热它们所需的能量, 所以随着粉尘量的增加, 起爆所需要的能量也增加。但是, RDX的能量密度远大于液体燃料, 当RDX质量分数达到一定程度(约55%)时, 体系增加的能量开始大于需要多消耗的能量, 故此后, 起爆所需的能量就迅速减少。如图 13所示, 当RDX质量分数大于55%时, 体系的爆轰胞格尺寸迅速减小。

    在测量胞格宽度的同时, 也测定了胞格的长度, 并计算其长宽比, 用数据处理软件计算得到误差线, 如图 14所示。Strehlow等人发现, 低爆轰压力下, 气相爆轰波的胞格长宽比近似满足L/λ≈1.61。不过正如图 12图 14所示, 多相爆轰波的胞格长宽比较小, 仅为1.2左右。胞格长宽比反映的是爆轰波和横波平均传播速度的比值, 其中:爆轰波的平均传播速度为定值, 由总放热量决定; 而横波的平均传播速度与波后声速相关[16]。如图 8所示, 90#溶剂油体系的爆轰波平均传播速度比混合溶剂体系大; 又由表 3知, 二者介质密度接近, 故其波后声速也接近, 因此前者的胞格长宽比大于后者。

    图  14  RDX-90#溶剂油-空气和RDX-混合溶剂-空气体系爆轰胞格长宽比随RDX质量分数的变化趋势
    Figure  14.  L/λ of Detonation cell with mass fraction of RDX for RDX-90# solvent oil-air and RDX-mixed fuel-air system

    在二次引爆型FAE的云雾起爆阶段, 若发生蹿火将大大降低FAE的作用威力。如果在液固云爆药剂中采用前述配方(RDX的质量分数为55%), 则FAE云团的直接气爆能量增加, 能够降低发生蹿火的风险。不过其效果还需要进一步的实验验证。

    3.4.2   胞格尺寸与临界起爆能

    根据Lee提出的表面积能量模型[13-15], 即球形爆轰波表面所含的能量等于平面爆轰在临界管径内的能量, 此时所需满足的临界条件为

    4πR2=πd2c4
    (1)

    式中:R*为爆轰内核半径, dc为临界管径。

    此外, 由强爆轰波理论可知, 爆轰波能量为

    Ec=4πIγp0Ma2R3Sh
    (2)

    式中:Ec为临界起爆能量, γ为气体绝热指数, I为定常数(当γ=1.4时, I=0.423), p0为压强, Ma为球形爆轰波的马赫数, RSh是球形爆轰波的半径。

    依据Zeldovich准则, 当爆炸波衰减到Ma=MaCJ(MaCJ为CJ爆轰波的马赫数)时, 有RSh=R*。对于未稀释的混合气体, 临界管径与爆轰胞格尺寸之间存在如下经验公式

    dc=13λ
    (13)

    因此, 联合(1)式~(3)式, 可得气相爆轰参数中, 临界起爆能量与胞格尺寸之间的关系为

    Ec=4πIγp0Ma2CJ(13λ4)3=2197πρ0v2CJIλ316
    (4)

    式中:ρ0为混合物密度; vCJ为CJ爆速, 近似取实测爆速。根据(4)式, 即可由气相爆轰胞格尺寸预测其直接起爆的临界起爆能量。

    多相爆轰中, 无论液体还是固体粉尘, 都要先经历物理破碎、相变过程, 之后的阶段就和气相爆轰一样, 所以推测多相爆轰也能采用气相爆轰的方法预测其临界起爆能量。为了验证(4)式是否能应用于多相爆轰中, 测试了RDX-90#溶剂油-空气和RDX-混合溶剂-空气体系的临界起爆能量, 起爆物分别为一发雷管加1.5 g塑性炸药和一发雷管。测试结果与理论值相比较, 列于表 3

    表  3  临界起爆能实验值与理论值的比较
    Table  3.  Comparison between experimental and theoretical value of critical initiation energy
    Constituents ρ0/
    (kg/m3)
    vCJ/
    (m/s)
    λ/
    (mm)
    Theoretical
    Ec/(kJ)
    Experimental
    Ec/(kJ)
    RDX-90# solvent oil-air 1.633 2 1 794 24.6 14.279 14.735
    RDX-mixed fuel-air 1.659 5 1 808 19.1 6.893 5.945
    下载: 导出CSV 
    | 显示表格

    由此可见, 多相爆轰参数——临界起爆能和胞格尺寸之间确实存在类似(4)式的关系, 但还需要进一步的实验和理论验证。

    (1) 立式激波管可以对液、固两相燃料进行同时抛撒, 实现气-液-固三相爆轰, 并能对爆压、爆速、最小起爆能、胞格尺寸等爆轰参数进行测量。

    (2) 90#溶剂油-空气体系的平均爆压达到5~6 MPa, 可以将其作为燃料-空气炸药的主燃料。

    (3) 添加RDX有助于提高90#溶剂油-IPN混合燃料体系的爆速和爆压。

    (4) 加入IPN后, 混合溶剂的直接起爆能量降低, 较易实现爆轰, 故IPN可以作为一种敏化剂加入FAE燃料之中。此外, 加入IPN的混合溶剂爆轰胞格也较小, 可见临界起爆能量和爆轰胞格之间存在与气相爆轰类似的关系, 但还需要进一步的实验和理论验证。

  • 图  Ta-2.5%W合金限制应变(0.32)后不同温度下二次加载曲线与单次加载应力-应变曲线比较[50]

    Figure  1.  Comparison of secondary loading curve and single loading ture stress-ture strain curve at different temperatures while Ta-2.5%W alloy was limited strain (0.32)[50]

    图  (a)不同应变率、加载方式下镁基金属的功热转化系数[52],(b)不同材料在不同加载方式下的Taylor-Quinney系数范围(C、T和S分别代表压缩、拉伸和剪切3种加载模式)[30]

    Figure  2.  (a) Work heat conversion coefficients of magnesium based metals under different strain rates and loading modes[52], (b) Taylor-Quinney coefficient range of different materials under different loading methods (C is compression mode, T is tension mode, S is shear mode.)[30]

    图  动态加载后功热转化系数在帽型试样截面的分布[55]

    Figure  3.  Distribution of work heat conversion coefficient in the cap specimen cross section after dynamic loading[55]

    图  (a)钛在不同晶粒尺寸和初始温度下剪切带内的降温曲线[64], (b)金属玻璃剪切带附近不同时刻的温升分布[66](时间单位为ns)

    Figure  4.  (a) Ti cooling curves in shear band with different grain size and initial temperature[64], (b) temperature rise distribution at different times near the shear band of metallic glass[66] (t is in nanoseconds)

    图  (a)CRS-1018钢在不同塑性应变下温度的空间分布[74],(b)4种热软化模型描述的剪切带中心温度随名义应变的变化(θ表示带内温度与环境温度的差,图例表示不同热软化模型函数)[75]

    Figure  5.  (a) Temperature profiles of CRS-1018 steel at different plastic strain[74], (b) relationship between the shear band center temperature and nominal strain described by four thermal softening models (θ is the difference between the temperature in the band and the ambient temperature. The legend shows the different heat softening model functions.)[75]

    图  (a)模型中心处应力、温度以及应变率随时间的变化[76],(b)纳米铁剪切带内应力和温度的演化[78]

    Figure  6.  (a) Time dependence of stress, temperature and strain rate at the center of the model[76], (b) evolution diagram of internal stress and temperature in shear band of nano-iron[78]

    图  25 m/s下不同时刻沿剪切带方向的温度分布曲线[83]

    Figure  7.  Temperature profiles along shear band line at different times after 25 m/s impact[83]

    图  (a)动态扭转有限元计算试样中面的温度分布(图例中由蓝色到红色温度逐渐升高)[84],(b)不同模拟时刻(25、30、35、40、45 μs)不锈钢剪切区域的温度分布[85]

    Figure  8.  (a) Computed contour plot of the temperature distributions within the specimen near the notch tip at the end of the simulation[84], (b) profile of temperature at 316L stainless steel at different simulation times (25、30、35、40、45 μs)[85]

    图  (a)PMMA在不同应变率加载条件下的应力-应变关系以及温升-应变关系[94],(b)PC盘形试样动态加载(平均名义应变率为6500 s−1)条件下应力和温升随应变的变化关系[95]

    Figure  9.  (a) Stress-strain and strain-temperature-rise curves for PMMA at various strain rates in compression[94], (b) true stress-true strain and temperature rises for PC disk 41 (Nominal average strain rate is 6500 s−1)[95]

    图  10  (a)铁基形状记忆合金非弹性应变和热电偶温度信号随时间的变化[97],(b)铁基形状记忆合金在压缩[97]和拉伸[98]加载时,不同应变率下试样表面的温升-应变关系

    Figure  10.  (a) Time history of inelastic strain and change in temperature under compression[97], (b) temperature rise-true strain curves of shape memory alloy under compression[97] and tension[98]

    图  11  (a)预置裂纹钢板动态加载过程中裂纹扩展路径附近某处的温度演化[99],(b)预置疲劳裂纹PMMA试样动态加载过程中试样内部的温度演化[100]

    Figure  11.  (a) Measured temperature history of steel data experienced by material near the path of a rapidly propagating crack[99], (b) temperature of PMMA recorded in the vicinity of fracture time[100]

    图  12  (a)绝热剪切温度测量系统[103],(b)探元阵列测得剪切带附近的温度变化历程[105]

    Figure  12.  (a) Adiabatic shear temperature measurement system[103], (b) temperature change near the shear zone measured by probe array[105]

    图  13  (a)圆柱子弹冲击带缺口平板加载方式示意图[106],(b)动态加载裂纹尖端温度场分布[107]

    Figure  13.  (a) Asymmetric impact configuration and failure mode[106], (b) a high-speed thermal image of a developed shear band[107]

    图  14  低温传感器测温实验结果(a)和高温传感器测温实验结果(b)[108]

    Figure  14.  3D temperature visualization at ‘‘low temperatures’’ range (a) and radiance temperature field at ‘‘high temperatures’’ range (b)[108]

    图  15  (a)Ti-6Al-4V合金的力学-测温实验结果[32],(b)纯钛的力学-测温实验结果[112]

    Figure  15.  (a) Typical stress and temperature vs. strain for Ti-6Al-4V alloys[32], (b) typical stress and temperature vs. strain for pure titanium[112]

    图  16  PC高分子聚合物在3000 s−1(a)和6000 s−1(b)应变率下应力和温度随应变的变化曲线(蓝色实线为真实应力,黑色实线为热电偶测温结果,红色虚线为红外测温结果。)[117]

    Figure  16.  Typical stress-strain-temperature plot at 3000 s−1 (a) and 6000 s−1 (b) (The blue solid line represents the real stress, the black solid line represents the thermocouple temperature measurement results, the red dotted line represents the infrared temperature measurement results.)[117]

    图  17  绝热剪切的微观形貌[118]:(a)4340钢动态扭转加载后材料断面的整体微观形貌,(b)瘤状凸起处的放大图

    Figure  17.  Microstructure of adiabatic shear[118]: (a) microstructure of cross section of 4340 steel after dynamic torsion loading, (b) higher magnification SEM fractograph of the knobbly region

    图  18  (a)HY-100结构钢动态扭转加载后断面的白色侵蚀面[103],(b)Ti-6Al-4V靶板冲击后剪切带内的微观组织形貌[4]

    Figure  18.  (a) White erosion surface of HY-100 structural steel after dynamic torsion loading[103], (b) microstructure in shear band of Ti-6Al-4V target after impact[4]

    图  19  (a)铜剪切带内部的TEM微观结构和衍射图谱[120],(b)8090铝-锂合金剪切带内部的TEM微观结构和衍射图谱[122]

    Figure  19.  (a) TEM microstructure and diffraction pattern of copper shear band[120], (b) TEM microstructure and diffraction pattern in shear band of 8090 Al-Li alloy[122]

    图  20  不锈钢动态加载后的微观TEM图[48]:(a)剪切带内形貌,(b)剪切带外形貌,(c)ZK60镁合金剪切带及其附近的微观形貌和不同位置的选区衍射图[42]

    Figure  20.  TEM micrograph of stainless steel after dynamic loading [48]: (a) microcrystalline structure inside bands, (b) large grains outside bands, (c) bright field image and selected area diffraction (SAD) pattern of the ZK60 magnesium alloy microstructure in shear region[42]

    图  21  (a)钢中剪切带及其附近区域的晶粒形貌及取向分布[46],(b)ECAP晶粒细化处理钛合金中剪切带及其附近区域微观形貌及取向分布[124]

    Figure  21.  (a) Grain morphology and orientation distribution of shear band and its vicinity in steel[46], (b) microstructure and orientation distribution of shear band and its vicinity in ECAP grain refinement titanium alloy[124]

    图  22  绝热剪切带产生之前Ti-6Al-4V试样内出现的再结晶晶粒及其对应的选区衍射图[126](a);钛合金试样剪切带完全形成前试样的整体(b)和局部(c)形貌[124]

    Figure  22.  Recrystallized grains in Ti-6Al-4V before adiabatic shear band and their corresponding selected area diffractionpatterns[126] (a); whole (b) and microstructure (c) of the shear band morphology for ECAP titanium alloy[124]

    表  1  基于功热转化理论的绝热温升计算结果

    Table  1.   Calculation results of adiabatic temperature rise based on thermomechanical conversion

    MaterialDynamic test methodTaylor-Quinney coefficientShear band width/μmTheoretical temperature rise/K
    4340 steel[31]Torsion1.020–601 100
    AISI 304L stainless steel[48]Hat-shaped shear0.9101 200
    Ti-6Al-4V[34]Torsion1.0852
    Ti-6Al-4V[33]Double shear0.96.51 460
    Ti-6Al-4V[32]Shear-compression1.0180
    AM50 magnesium alloy[32]Shear-compression1.035
    AMX602 magnesium alloy[36]Compression0.9661 000
    ZK60 magnesium alloy[42]Compression0.9365
    7003-T4 aluminium alloy[35]Compression0.940–110272–409
    Tungsten[37]Compression0.9100
    Ultrafine-grained pure titanium[38]Hat-shaped shear0.9650
    Ultrafine-grained pure iron[39]Compression0.9100
    Ultrafine-grained magnesium alloy[40]Compression0.967
    下载: 导出CSV

    表  2  功热转化系数研究总结

    Table  2.   Research summary on Taylor-Quinney coefficient

    MaterialLoading method
    Strain rate/(103 s−1)Sensor typeTemperature rise/Kβ
    Ta-2.5%W[50]Compression3 InSb630.68
    Ta[51]Shear-compression4.2HgCdTe > 801.00
    Mg[52]Shear-compression
    1.8–3.7
    HgCdTe < 50.10–0.30
    AZ31 magnesium alloy[52]Shear-compression
    2–4
    HgCdTe250.20–0.80
    α-Ti[53]Compression2InSb/HgCdTe870.55–0.66
    α-Ti[53]Shear-compression3InSb/HgCdTe870.55–0.66
    β-Ti[53]Compression2InSb/HgCdTe600.27–0.43
    β-Ti[53]Shear-compression2.0–3.5InSb/HgCdTe600.27–0.43
    Pure titanium[54]Shear-compression13InSb50–900.25–0.55
    Ti-6Al-4V[32]Shear-compression3HgCdTe650.40
    OFHC copper[55]Compression4.4InSb/
    HgCdTe
    400.30–0.40
    7075-T651 aluminium alloy[56]Compression
    1.1–4.2
    HgCdTe10–700.30–0.96
    2024-T3 aluminium alloy[57]Compression3HgCdTe0.30–0.50
    Aluminium[58]Compression3.5–5
    InSb/
    HgCdTe
    0.45–0.65
    Ni200[58]Compression
    3.3–4.7
    InSb/
    HgCdTe
    0.35–0.65
    下载: 导出CSV

    表  3  绝热温升实验测量结果

    Table  3.   Previous measurements of adiabatic temperature rise

    MaterialDynamic loading methodStrain rate/(103 s−1)Observed spot size/
    (mm × mm)
    Experimental
    temperature rise/K
    HY-100 steel[103]Torsion1.30.035 × 0.120425–595
    AISI 4340 steel[105]Torsion10.017 × 0.053460–570
    C-300 steel[107]Mode Ⅰ fracture0.10 × 0.10630
    C-300 steel[106]Mode Ⅱ fracture0.08 × 0.08900–1400
    Ti-6Al-4V[106]Mode Ⅱ fracture0.08 × 0.08450
    Ti-6Al-4V[26]Torsion10.017 × 0.053440–550
    Ti-6Al-4V[28]Tension10.05 × 0.05200
    Ti-6Al-4V[108]Torsion1–20.043 × 0.0431080
    Ti-6Al-4V[114]Shear-compression0.15 × 0.15250
    Ti-6Al-4V[32]Shear-compression30.045 × 0.045300
    AM50
    magnesium alloy[32]
    Shear-compression30.045 × 0.045110
    Ta-2
    titanium alloy[111]
    Hat-shaped shear1.4 × 1.4160
    Austenitic stainless steel[109]Tension3350
    Pure titanium[54]Shear-compression130.15 × 0.15350–650
    下载: 导出CSV
  • [1] MOLINARI A, MUSQUAR C, SUTTER G. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling [J]. International Journal of Plasticity, 2002, 18(4): 443–459. doi: 10.1016/S0749-6419(01)00003-1
    [2] 王升平. TC4钛合金锯齿形切屑绝热剪切带的微观组织和显微硬度变化 [J]. 中国机械工程, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024

    WANG S P. Investigation on microstructure and microhardness of adiabatic shear band of saw-tooth chip in machining TC4 alloy [J]. China Mechanical Engineering, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024
    [3] SEMIATIN S L, LAHOTI G D. Deformation and unstable flow in hot forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si [J]. Metallurgical Transactions A, 1981, 12(10): 1705–1717. doi: 10.1007/BF02643753
    [4] ME-BAR Y, SHECHTMAN D. On the adiabatic shear of Ti-6Al-4V ballistic targets [J]. Materials Science and Engineering, 1983, 58(2): 181–188. doi: 10.1016/0025-5416(83)90044-7
    [5] MURR L E, RAMIREZ A C, GAYTAN S M, et al. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets [J]. Materials Science and Engineering: A, 2009, 516(1/2): 205–216. doi: 10.1016/j.msea.2009.03.051
    [6] WALLEY S M. Shear localization: a historical overview [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2629–2654. doi: 10.1007/s11661-007-9271-x
    [7] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
    [8] BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories and applications [M]. Oxford: Pergamon Press, 1992.
    [9] DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. 2nd ed. Amsterdam: Elsevier, 2012.
    [10] WRIGHT T W. The physics and mathematics of adiabatic shear bands [M]. Cambridge: Cambridge University Press, 2002.
    [11] MEYERS M A. Shear bands (thermoplastic shear instabilities) [M]//MEYERS M A. Dynamic Behavior of Materials. John Wiley & Sons Inc., 1994: 448–487.
    [12] ANTOLOVICH S D, ARMSTRONG R W. Plastic strain localization in metals: origins and consequences [J]. Progress in Materials Science, 2014, 59: 1–160. doi: 10.1016/j.pmatsci.2013.06.001
    [13] TIMOTHY S P. The structure of adiabatic shear bands in metals: a critical review [J]. Acta Metallurgica, 1987, 35(2): 301–306. doi: 10.1016/0001-6160(87)90238-0
    [14] DUAN C Z, WANG M J. A review of microstructural evolution in the adiabatic shear bands induced by high speed machining [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(2): 97–112. doi: 10.1007/s40195-013-2001-z
    [15] XU Y B, ZHANG J H, BAI Y L, et al. Shear localization in dynamic deformation: microstructural evolution [J]. Metallurgical and Materials Transactions A, 2008, 39(4): 811–843. doi: 10.1007/s11661-007-9431-z
    [16] DUFFY J. Experimental studies of shear band formation through temperature measurements and high speed photography [J]. Journal de Physique Ⅳ, 1991, 1(C3): 645–652. doi: 10.1051/jp4:1991390
    [17] RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1/2): 177–185. doi: 10.1007/s10704-010-9475-8
    [18] 钟杰, 叶雁, 李作友. 红外热成像技术测量绝热剪切带温度的综述 [J]. 高能量密度物理, 2010(1): 43–48.

    ZHONG J, YE Y, LI Z Y. Review of measurement of adiabatic shear band temperature by infrared thermal imaging [J]. High Energy Density Physics, 2010(1): 43–48.
    [19] 谭成文, 王富耻, 李树奎. 绝热剪切变形局部化研究进展及发展趋势 [J]. 兵器材料科学与工程, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016

    TAN C W, WANG F C, LI S K. Progresses and trends in researches on adiabatic shear deformation [J]. Ordnance Material Science and Engineering, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016
    [20] 索涛, 汪存显, 杭超, 等. 材料动态变形中的绝热剪切带研究现状 [J]. 机械科学与技术, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101

    SUO T, WANG C X, HANG C, et al. The research status of adiabatic shear band in dynamic deformation [J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101
    [21] 肖大武, 李英雷, 蔡灵仓. 绝热剪切研究进展 [J]. 实验力学, 2010, 25(4): 463–475.

    XIAO D W, LI Y L, CAI L C. Progress in research on adiabatic shearing [J]. Journal of Experimental Mechanics, 2010, 25(4): 463–475.
    [22] 杨扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001

    YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001
    [23] RECHT R F. Catastrophic thermoplastic shear [J]. Journal of Applied Mechanics, 1964, 31(2): 189–193. doi: 10.1115/1.3629585
    [24] MASON J J, ROSAKIS A J, RAVICHANDRAN G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar [J]. Mechanics of Materials, 1994, 17(2/3): 135–145. doi: 10.1016/0167-6636(94)90054-X
    [25] RITTEL D. On the conversion of plastic work to heat during high strain rate deformation of glassy polymers [J]. Mechanics of Materials, 1999, 31(2): 131–139. doi: 10.1016/S0167-6636(98)00063-5
    [26] LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. doi: 10.1016/S0022-5096(98)00044-1
    [27] HODOWANY J, RAVICHANDRAN G, ROSAKIS A J, et al. Partition of plastic work into heat and stored energy in metals [J]. Experimental Mechanics, 2000, 40(2): 113–123. doi: 10.1007/BF02325036
    [28] MACDOUGALL D A S, HARDING J. The measurement of specimen surface temperature in high-speed tension and torsion tests [J]. International Journal of Impact Engineering, 1998, 21(6): 473–488. doi: 10.1016/S0734-743X(98)00007-4
    [29] TAYLOR G I, QUINNEY H. The latent energy remaining in a metal after cold working [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 143(849): 307–326. doi: 10.1098/rspa.1934.0004
    [30] RITTEL D, ZHANG L H, OSOVSKI S. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 96–114. doi: 10.1016/j.jmps.2017.06.016
    [31] GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part I: direct observation of strain localization and energy dissipation measurements [J]. Mechanics of Materials, 1988, 7(1): 59–71. doi: 10.1016/0167-6636(88)90006-3
    [32] RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys [J]. Mechanics of Materials, 2008, 40(8): 629–635. doi: 10.1016/j.mechmat.2008.03.002
    [33] GUO Y Z, LI Y L. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. doi: 10.1016/S0894-9166(12)60027-5
    [34] BAI Y L, XUE Q, XU Y B, et al. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials, 1994, 17(2/3): 155–164. doi: 10.1016/0167-6636(94)90056-6
    [35] WU X D, LI L X, LIU W H, et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting [J]. Materials Science and Engineering: A, 2018, 732: 91–98. doi: 10.1016/j.msea.2018.06.087
    [36] SHEN J, KONDOH K, JONES T L, et al. Effect of strain rate on the mechanical properties of magnesium alloy AMX602 [J]. Materials Science and Engineering: A, 2016, 649: 338–348. doi: 10.1016/j.msea.2015.10.022
    [37] WEI Q, KECSKES L J, RAMESH K T. Effect of low-temperature rolling on the propensity to adiabatic shear banding of commercial purity tungsten [J]. Materials Science and Engineering: A, 2013, 578: 394–401. doi: 10.1016/j.msea.2013.04.109
    [38] LI Z Z, WANG B F, ZHAO S T, et al. Dynamic deformation and failure of ultrafine-grained titanium [J]. Acta Materialia, 2017, 125: 210–218. doi: 10.1016/j.actamat.2016.11.041
    [39] WEI Q, KECSKES L, JIAO T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Materialia, 2004, 52(7): 1859–1869. doi: 10.1016/j.actamat.2003.12.025
    [40] MALIK A, WANG Y W, CHENG H W, et al. Microstructural evolution of ultra-fine grained Mg-6.62Zn-0.6Zr alloy on the basis of adiabatic rise in temperature under dynamic loading [J]. Vacuum, 2019, 168: 108810. doi: 10.1016/j.vacuum.2019.108810
    [41] XU Z J, LIU Y, HU H Z, et al. Determination of shear behavior and constitutive modeling of the 603 steel over wide temperature and strain rate ranges [J]. Journal of the Mechanics and Physics of Solids, 2019, 129: 184–204. doi: 10.1016/j.jmps.2019.05.005
    [42] JIANG L H, YANG Y, WANG Z, et al. Microstructure evolution within adiabatic shear band in peak aged ZK60 magnesium alloy [J]. Materials Science and Engineering: A, 2018, 711: 317–324. doi: 10.1016/j.msea.2017.10.111
    [43] WANG X B. Temperature distribution in adiabatic shear band for ductile metal based on Johnson-Cook and gradient plasticity models [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(2): 333–338. doi: 10.1016/S1003-6326(06)60057-5
    [44] MEYERS M A, SUBHASH G, KAD B K, et al. Evolution of microstructure and shear-band formation in α-hcp titanium [J]. Mechanics of Materials, 1994, 17(2/3): 175–193. doi: 10.1016/0167-6636(94)90058-2
    [45] MEYERS M A, ANDRADE U R, CHOKSHI A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper [J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2881–2893. doi: 10.1007/BF02669646
    [46] LINS J F C, SANDIM H R Z, KESTENBACH H J, et al. A microstructural investigation of adiabatic shear bands in an interstitial free steel [J]. Materials Science and Engineering: A, 2007, 457(1/2): 205–218. doi: 10.1016/j.msea.2006.12.019
    [47] HINES J A, VECCHIO K S. Recrystallization kinetics within adiabatic shear bands [J]. Acta Materialia, 1997, 45(2): 635–649. doi: 10.1016/S1359-6454(96)00193-0
    [48] MEYERS M A, XU Y B, XUE Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia, 2003, 51(5): 1307–1325. doi: 10.1016/S1359-6454(02)00526-8
    [49] PÉREZ-PRADO M T, HINES J A, VECCHIO K S. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys [J]. Acta Materialia, 2001, 49(15): 2905–2917. doi: 10.1016/S1359-6454(01)00215-4
    [50] KAPOOR R, NEMAT-NASSER S. Determination of temperature rise during high strain rate deformation [J]. Mechanics of Materials, 1998, 27(1): 1–12. doi: 10.1016/S0167-6636(97)00036-7
    [51] RITTEL D, BHATTACHARYYA A, POON B, et al. Thermomechanical characterization of pure polycrystalline tantalum [J]. Materials Science and Engineering: A, 2007, 447(1/2): 65–70. doi: 10.1016/j.msea.2006.10.064
    [52] GHOSH D, KINGSTEDT O T, RAVICHANDRAN G. Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy [J]. Metallurgical and Materials Transactions A, 2017, 48(1): 14–19. doi: 10.1007/s11661-016-3825-8
    [53] ZHANG L H, RITTEL D, OSOVSKI S. Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys [J]. Materials Science and Engineering: A, 2018, 729: 94–101. doi: 10.1016/j.msea.2018.05.007
    [54] GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. doi: 10.1016/j.jmps.2019.103811
    [55] NIETO-FUENTES J C, RITTEL D, OSOVSKI S. On a dislocation-based constitutive model and dynamic thermomechanical considerations [J]. International Journal of Plasticity, 2018, 108: 55–69. doi: 10.1016/j.ijplas.2018.04.012
    [56] ZHANG T, GUO Z R, YUAN F P, et al. Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology [J]. Acta Mechanica Sinica, 2018, 34(2): 327–333. doi: 10.1007/s10409-017-0673-8
    [57] RAVICHANDRAN G, ROSAKIS A J, HODOWANY J, et al. On the conversion of plastic work into heat during high-strain-rate deformation [J]. AIP Conference Proceedings, 2002, 620(1): 557–562. doi: 10.1063/1.1483600
    [58] NIETO-FUENTES J C, OSOVSKI S, VENKERT A, et al. Reassessment of the dynamic thermomechanical conversion in metals [J]. Physical Review Letters, 2019, 123(25): 255502. doi: 10.1103/PhysRevLett.123.255502
    [59] BEVER M B, HOLT D L, TITCHENER A L. The stored energy of cold work [J]. Progress in Materials Science, 1973, 17: 5–177. doi: 10.1016/0079-6425(73)90001-7
    [60] LIEOU C K C, MOURAD H M, BRONKHORST C A. Strain localization and dynamic recrystallization in polycrystalline metals: thermodynamic theory and simulation framework [J]. International Journal of Plasticity, 2019, 119: 171–187. doi: 10.1016/j.ijplas.2019.03.005
    [61] LANGER J S, BOUCHBINDER E, LOOKMAN T. Thermodynamic theory of dislocation-mediated plasticity [J]. Acta Materialia, 2010, 58(10): 3718–3732. doi: 10.1016/j.actamat.2010.03.009
    [62] 贾力, 方肇洪, 钱兴华. 高等传热学[M]. 北京: 高等教育出版社, 2003.

    JIA L, FANG Z H, QIAN X H. Advanced heat transfer [M]. Beijing: Higher Education Press, 2003.
    [63] NEMAT-NASSER S, ISAACS J B, LIU M Q. Microstructure of high-strain, high-strain-rate deformed tantalum [J]. Acta Materialia, 1998, 46(4): 1307–1325. doi: 10.1016/S1359-6454(97)00746-5
    [64] LI Z Z, ZHAO S T, WANG B F, et al. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium [J]. Acta Materialia, 2019, 181: 408–422. doi: 10.1016/j.actamat.2019.09.011
    [65] 侯镇冰, 何绍杰, 李恕先. 固体热传导[M]. 上海: 上海科学技术出版社, 1984.

    HOU Z B. Solid heat conduction [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1984.
    [66] LEWANDOWSKI J J, GREER A L. Temperature rise at shear bands in metallic glasses [J]. Nature Materials, 2006, 5(1): 15–18. doi: 10.1038/nmat1536
    [67] ECKERT E R G. Heat and mass transfer [M]. 2nd ed. New York: McGraw-Hill, 1959.
    [68] CUSHMAN-ROISIN B, BECKERS J M. Diffusive processes [J]. International Geophysics, 2011, 101: 131–161. doi: 10.1016/B978-0-12-088759-0.00005-5
    [69] CARSLAW H S, JAEGER J C. Conduction of heat in solids [M]. 2nd ed. Oxford: Oxford University Press, 1959.
    [70] WANG Q, OLIVIER H, EINHOFF J, et al. Influence of test model material on the accuracy of transient heat transfer measurements in impulse facilities [J]. Experimental Thermal and Fluid Science, 2019, 104: 59–66. doi: 10.1016/j.expthermflusci.2019.02.013
    [71] WRIGHT W J, SCHWARZ R B, NIX W D. Localized heating during serrated plastic flow in bulk metallic glasses [J]. Materials Science and Engineering: A, 2001, 319/320/321: 229–232. doi: 10.1016/S0921-5093(01)01066-8
    [72] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006.
    [73] BAI Y L. Thermo-plastic instability in simple shear [J]. Journal of the Mechanics and Physics of Solids, 1982, 30(4): 195–207. doi: 10.1016/0022-5096(82)90029-1
    [74] CLIFTON R J, DUFFY J, HARTLEY K A, et al. On critical conditions for shear band formation at high strain rates [J]. Scripta Metallurgica, 1984, 18(5): 443–448. doi: 10.1016/0036-9748(84)90418-6
    [75] WALTER J W. Numerical experiments on adiabatic shear band formation in one dimension [J]. International Journal of Plasticity, 1992, 8(6): 657–693. doi: 10.1016/0749-6419(92)90023-6
    [76] WRIGHT T W, BATRA R C. The initiation and growth of adiabatic shear bands [J]. International Journal of Plasticity, 1985, 1(3): 205–212. doi: 10.1016/0749-6419(85)90003-8
    [77] WRIGHT T W. Shear band susceptibility: work hardening materials [J]. International Journal of Plasticity, 1992, 8(5): 583–602. doi: 10.1016/0749-6419(92)90032-8
    [78] GUO Y Z, LI Y L, PAN Z, et al. A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials [J]. Mechanics of Materials, 2010, 42(11): 1020–1029. doi: 10.1016/j.mechmat.2010.09.002
    [79] JOSHI S P, RAMESH K T. Rotational diffusion and grain size dependent shear instability in nanostructured materials [J]. Acta Materialia, 2008, 56(2): 282–291. doi: 10.1016/j.actamat.2007.09.031
    [80] ZHOU F, WRIGHT T W, RAMESH K T. A numerical methodology for investigating the formation of adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(5): 904–926. doi: 10.1016/j.jmps.2005.12.002
    [81] ZHOU F, WRIGHT T W, RAMESH K T. The formation of multiple adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1376–1400. doi: 10.1016/j.jmps.2006.01.006
    [82] 杨扬, 程信林, 安宁龙. TB2钛合金绝热剪切行为的数值模拟 [J]. 中国有色金属学报, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003

    YANG Y, CHENG X L, AN N L. Numerical simulation on adiahatic shearing behavior of TB2 [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003
    [83] ZHOU M, RAVICHANDRAN G, ROSAKIS A J. Dynamically propagating shear bands in impact-loaded prenotched plates-Ⅱ. Numerical simulations [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 1007–1021, 1023–1032. doi: 10.1016/0022-5096(96)00004-X
    [84] CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889–1909. doi: 10.1016/j.jmps.2004.02.013
    [85] BRONKHORST C A, CERRETA E K, XUE Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel [J]. International Journal of Plasticity, 2006, 22(7): 1304–1335. doi: 10.1016/j.ijplas.2005.10.002
    [86] XU Z J, DING X Y, ZHANG W Q, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique [J]. International Journal of Impact Engineering, 2017, 101: 90–104. doi: 10.1016/j.ijimpeng.2016.11.012
    [87] XU Z J, LIU Y, SUN Z Y, et al. On shear failure behaviors of an armor steel over a large range of strain rates [J]. International Journal of Impact Engineering, 2018, 118: 24–38. doi: 10.1016/j.ijimpeng.2018.04.003
    [88] 许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445

    XU Z J, DING X Y, ZHANG W Q, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445
    [89] 张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107

    ZHANG W Q, XU Z J, SUN Z Y, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107
    [90] ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. doi: 10.1016/j.mechmat.2019.103102
    [91] 陈浩森, 郭亚洲, 朱盛鑫, 等. 多点式高速红外测温系统研制 [J]. 实验力学, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220

    CHEN H S, GUO Y Z, ZHU S X, et al. On the development of multi-point high speed infrared temperature measurement system [J]. Journal of Experimental Mechanics, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220
    [92] KENDALL M J, FROUD R F, SIVIOUR C R. Novel temperature measurement method & thermodynamic investigations of amorphous polymers during high rate deformation [J]. Polymer, 2014, 55(10): 2514–2522. doi: 10.1016/j.polymer.2014.03.058
    [93] RABIN Y, RITTEL D. A model for the time response of solid-embedded thermocouples [J]. Experimental Mechanics, 1999, 39(2): 132–136. doi: 10.1007/BF02331116
    [94] CHOU S C, ROBERTSON K D, RAINEY J H. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics [J]. Experimental Mechanics, 1973, 13(10): 422–432. doi: 10.1007/BF02324886
    [95] RITTEL D. Transient temperature measurement using embedded thermocouples [J]. Experimental Mechanics, 1998, 38(2): 73–78. doi: 10.1007/BF02321647
    [96] SASSI S, TARFAOUI M, BEN YAHIA H. In-situ heat dissipation monitoring in adhesively bonded composite joints under dynamic compression loading using SHPB [J]. Composites Part B: Engineering, 2018, 154: 64–76. doi: 10.1016/j.compositesb.2018.07.039
    [97] CAO B, IWAMOTO T. An experimental investigation on rate dependency of thermomechanical and Stress-induced martensitic transformation behavior in Fe-28Mn-6Si-5Cr shape memory alloy under compression [J]. International Journal of Impact Engineering, 2019, 132: 103284. doi: 10.1016/j.ijimpeng.2019.04.026
    [98] CAO B, IWAMOTO T. A new method to measure volume resistivity during tension for strain rate sensitivity in deformation and transformation behavior of Fe-28Mn-6Si-5Cr shape memory alloy [J]. International Journal of Mechanical Sciences, 2018, 146/147: 445–454. doi: 10.1016/j.ijmecsci.2017.09.020
    [99] SHOCKEY D A, KALTHOFF J F, KLEMM W, et al. Simultaneous measurements of stress intensity and toughness for fast-running cracks in steel [J]. Experimental Mechanics, 1983, 23(2): 140–145. doi: 10.1007/BF02320401
    [100] RITTEL D. Experimental investigation of transient thermoelastic effects in dynamic fracture [J]. International Journal of Solids and Structures, 1998, 35(22): 2959–2973. doi: 10.1016/S0020-7683(97)00352-1
    [101] AY H, YANG W J. Heat transfer and life of metal cutting tools in turning [J]. International Journal of Heat and Mass Transfer, 1998, 41(3): 613–623. doi: 10.1016/S0017-9310(97)00105-1
    [102] DEWES R C, NG E, CHUA K S, et al. Temperature measurement when high speed machining hardened mould/die steel [J]. Journal of Materials Processing Technology, 1999, 92/93: 293–301. doi: 10.1016/S0924-0136(99)00116-8
    [103] MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251–283. doi: 10.1016/0022-5096(88)90012-9
    [104] HARTLEY K A, DUFFY J, HAWLEY R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(3): 283–301. doi: 10.1016/0022-5096(87)90009-3
    [105] DUFFY J, CHI Y C. On the measurement of local strain and temperature during the formation of adiabatic shear bands [J]. Materials Science and Engineering: A, 1992, 157(2): 195–210. doi: 10.1016/0921-5093(92)90026-W
    [106] ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates–Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. doi: 10.1016/0022-5096(96)00003-8
    [107] GUDURU P R, RAVICHANDRAN G, ROSAKIS A J. Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding [J]. Physical Review E, 2001, 64(3): 036128. doi: 10.1103/PhysRevE.64.036128
    [108] RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading–adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. doi: 10.1016/j.mechmat.2007.08.002
    [109] SEIDT J D, KUOKKALA V T, SMITH J L, et al. Synchronous full-field strain and temperature measurement in tensile tests at low, intermediate and high strain rates [J]. Experimental Mechanics, 2017, 57(2): 219–229. doi: 10.1007/s11340-016-0237-z
    [110] 刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05

    LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperatureunder shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05
    [111] 付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004
    [112] GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. doi: 10.1103/PhysRevLett.122.015503
    [113] RITTEL D, RAVICHANDRAN G, VENKERT A, et al. The mechanical response of pure iron at high strain rates under dominant shear [J]. Materials Science and Engineering: A, 2006, 432(1/2): 191–201. doi: 10.1016/j.msea.2006.05.154
    [114] ZHU S X, GUO Y Z, RUAN Q C, et al. Formation of adiabatic shear band within Ti-6Al-4V: an in-situ study with high-speed photography and temperature measurement [J]. International Journal of Mechanical Sciences, 2020, 171: 105401. doi: 10.1016/j.ijmecsci.2019.105401
    [115] MACDOUGALL D A S, HARDING J. A constitutive relation and failure criterion for Ti6Al4V alloy at impact rates of strain [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(5): 1157–1185. doi: 10.1016/S0022-5096(98)00086-6
    [116] ZEHNDER A T, GUDURU P R, ROSAKIS A J, et al. Million frames per second infrared imaging system [J]. Review of Scientific Instruments, 2000, 71(10): 3762–3768. doi: 10.1063/1.1310350
    [117] REGEV A, RITTEL D. Simultaneous transient temperature sensing of impacted polymers using infrared detectors and thermocouples [J]. Experimental Mechanics, 2008, 48(5): 675–682. doi: 10.1007/s11340-007-9096-y
    [118] GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part Ⅱ: fractographic and metallographic observations [J]. Mechanics of Materials, 1988, 7(1): 73–87. doi: 10.1016/0167-6636(88)90007-5
    [119] NEMAT-NASSER S, CHANG S N. Compression-induced high strain rate void collapse, tensile cracking, and recrystallization in ductile single and polycrystals [J]. Mechanics of Materials, 1990, 10(1/2): 1–17. doi: 10.1016/0167-6636(90)90013-6
    [120] ANDRADE U, MEYERS M A, VECCHIO K S, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper [J]. Acta Metallurgica et Materialia, 1994, 42(9): 3183–3195. doi: 10.1016/0956-7151(94)90417-0
    [121] MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. doi: 10.1016/S0921-5093(01)01160-1
    [122] XU Y B, ZHONG W L, CHEN Y J, et al. Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy [J]. Materials Science and Engineering: A, 2001, 299(1/2): 287–295. doi: 10.1016/S0921-5093(00)01412-X
    [123] HWANG B, LEE S, KIM Y C, et al. Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing [J]. Materials Science and Engineering: A, 2006, 441(1/2): 308–320. doi: 10.1016/j.msea.2006.08.045
    [124] LIU S L, PAN Z L, ZHAO Y H, et al. Effect of strain rate on the mechanical properties of a gum metal with various microstructures [J]. Acta Materialia, 2017, 132: 193–208. doi: 10.1016/j.actamat.2017.04.052
    [125] LIU S L, GUO Y Z, PAN Z L, et al. Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal [J]. Journal of Materials Science & Technology, 2020, 54: 31–39. doi: 10.1016/j.jmst.2020.03.042
    [126] RITTEL D, LANDAU P, VENKERT A. Dynamic recrystallization as a potential cause for adiabatic shear failure [J]. Physical Review Letters, 2008, 101(16): 165501. doi: 10.1103/PhysRevLett.101.165501
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  4348
  • HTML全文浏览量:  992
  • PDF下载量:  105
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-04-02

目录

/

返回文章
返回