New Developments of Hydrogen-Based High-Temperature Superconductors under High Pressure
-
摘要: 富氢材料被认为是室温超导体的最佳候选体系,是物理学、材料科学等多学科的热点研究领域之一。理论和实验研究发现的新型共价氢化物H3S和笼状氢化物LaH10的超导转变温度(Tc)均超过 200 K,进一步推动了对富氢化合物超导电性的探索。最近,通过高压实验合成的碳质硫氢化物在288 K的室温下实现了零电阻,让人们看到了室温超导的曙光。本文结合课题组在此领域的主要成果,介绍了3类典型富氢化合物的结构及超导特性,包括近期首次在层状氢化物中发现的具有类五角石墨烯结构的富氢超导体HfH10,其超导转变温度高达213~234 K。Abstract: Hydrogen-rich materials are considered to be the most potential candidates for room-temperature superconductors, yielding a research hotspot in physics, material science and so on. Remarkably, the new covalent hydride H3S and clathrate like LaH10, exhibit record high superconducting transition temperature (Tc) above 200 K both found theoretically and experimentally, which further promotes the study on the superconductivity of hydrogen-rich compounds. Very recently, the successful experimental discovery of high-temperature superconductivity at 288 K in a carbonaceous sulfur hydride system at high pressure shows the light for achieving room-temperature superconductors. In this paper, we introduce the structures and superconductivities of three typical hydrogen-rich compounds, including HfH10, a "pentagraphenelike" superconductor exhibiting an extraordinarily high Tc of around 213–234 K at 250 GPa, which was recently discovered for the first time in layered structure hydrides.
-
Key words:
- high pressure /
- hydrogen-rich material /
- layered hydrides /
- superconductivity
-
图 2 (a)Fm
${\overline{3}} $ m-LaH10结构中的H32笼状结构[17],(b)P63/mmc-CeH9结构中的H29笼状结构[44],(c)各二元富氢化物中的最近邻氢原子距离与金属氢中最近邻氢原子距离的比较[44]Figure 2. (a) The H32 cage in Fm
${\overline{3}} $ m-LaH10[17], (b) the H29 cage in P63/mmc-CeH9[44], (c) the evolution of nearest-neighbor H-H distances in polyhydrides and atomic metallic H2 as a function of pressure[44]表 1 3类高Tc氢化物中氢的结构类型、金属的原子半径、电负性、价电子排布、晶体结构对称性以及对应压力点下超导电性的对比[33]
Table 1. Comparison of structural types, atomic radius, electronegativity, electronic configuration, crystal structure symmetry and superconductivity of H in three types of high Tc hydrides[33]
Hydrogenic
motifsHydrides Atomic
radius/ÅElectronegativity Electronic
configurationSpace group Tc/K H3S 1.84 2.58 [Ne] 3s23p4 Im${\overline{3}} $m 204a (200 GPa)[13],
203b (155 GPa)[28]H3Se 1.98 2.55 [Ne] 3d104s24p4 Im${\overline{3}} $m 110a (200 GPa)[52] LaH10 1.88 1.10 [Xe] 5d16s2 Fm${\overline{3}} $m 288a (200 GPa)[18],
250–260b
(170–200 GPa)[31, 30]YH10 1.81 1.22 [Kr] 4d15s2 Fm${\overline{3}} $m 303a (400 GPa)[18] ThH10 1.80 1.30 [Rn] 6d27s2 Fm${\overline{3}} $m 241a (100 GPa)[19],
161b (174 GPa)[32]HfH10 1.56 1.30 [Xe] 4f145d26s2 P63/mmc 234c (250 GPa) ZrH10 1.60 1.33 [Kr] 4d25s2 P63/mmc 220c (250 GPa) ScH10 1.61 1.36 [Ar] 3d14s2 P63/mmc 158c (250 GPa) LuH10 1.73 1.27 [Xe] 4f145d16s2 P63/mmc 152c (200 GPa) Note : (1) The superscript “a” denotes the calculated Tc with fixed $\;\mu ^*$ = 0.1 ($\;\mu ^*$ is the coulomb parameter);
(2) The superscript “b” denotes the experimental Tc in previous work;
(3) The superscript “c” denotes the obtained Tc using G-K equation with $\;\mu ^*$ = 0.1. -
[1] BEDNORZ J G, MÜLLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189–193. doi: 10.1007/BF01303701 [2] GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164 K in HgBa2Ca m-1CumO2 m+2+ δ (m = 1, 2, and 3) under quasihydrostatic pressures [J]. Physical Review B, 1994, 50(6): 4260–4263. doi: 10.1103/PhysRevB.50.4260 [3] WU G, XIE Y L, CHEN H, et al. Superconductivity at 56 K in samarium-doped SrFeAsF [J]. Journal of Physics: Condensed Matter, 2009, 21(14): 142203. doi: 10.1088/0953-8984/21/14/142203 [4] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590 [5] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity [J]. Physical Review, 1957, 108(5): 1175–1204. doi: 10.1103/PhysRev.108.1175 [6] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164 [7] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3 [8] ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002 [9] DUAN D F, LIU Y X, MA Y B, et al. Structure and superconductivity of hydrides at high pressures [J]. National Science Review, 2017, 4(1): 121–135. doi: 10.1093/nsr/nww029 [10] DUAN D F, YU H Y, XIE H, et al. Ab initio approach and its impact on superconductivity [J]. Journal of Superconductivity and Novel Magnetism, 2019, 32(1): 53–60. doi: 10.1007/s10948-018-4900-8 [11] EREMETS M I, TROJAN I A, MEDVEDEV S A, et al. Superconductivity in hydrogen dominant materials: silane [J]. Science, 2008, 319(5869): 1506–1509. doi: 10.1126/science.1153282 [12] GONCHARENKO I, EREMETS M I, HANFLAND M, et al. Pressure-induced hydrogen-dominant metallic state in aluminum hydride [J]. Physical Review Letters, 2008, 100(4): 045504. doi: 10.1103/PhysRevLett.100.045504 [13] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968 [14] DUAN D F, HUANG X L, TIAN F B, et al. Pressure-induced decomposition of solid hydrogen sulfide [J]. Physical Review B, 2015, 91(18): 180502. doi: 10.1103/PhysRevB.91.180502 [15] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109 [16] LI Y W, HAO J, LIU H Y, et al. Pressure-stabilized superconductive yttrium hydrides [J]. Scientific Reports, 2015, 5: 9948. doi: 10.1038/srep09948 [17] LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114 [18] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001 [19] KVASHNIN A G, SEMENOK D V, KRUGLOV I A, et al. High-temperature superconductivity in a Th-H system under pressure conditions [J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43809–43816. doi: 10.1021/acsami.8b17100 [20] JIN X L, MENG X, HE Z, et al. Superconducting high-pressure phases of disilane [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9969–9973. doi: 10.1073/pnas.1005242107 [21] TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176 [22] DUAN D F, TIAN F B, LIU Y X, et al. Enhancement of Tc in the atomic phase of iodine-doped hydrogen at high pressures [J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32335–32340. doi: 10.1039/C5CP05218A [23] DUAN D F, HUANG X L, TIAN F B, et al. Predicted formation of H $$ in solid halogen polyhydrides at high pressures [J]. The Journal of Physical Chemistry A, 2015, 119(45): 11059–11065. doi: 10.1021/acs.jpca.5b08183[24] SHAO Z J, HUANG Y P, DUAN D F, et al. Stable structures and superconductivity of an At-H system at high pressure [J]. Physical Chemistry Chemical Physics, 2018, 20(38): 24783–24789. doi: 10.1039/C8CP04317E [25] WANG L Y, DUAN D F, YU H Y, et al. High-pressure formation of cobalt polyhydrides: a first-principle study [J]. Inorganic Chemistry, 2018, 57(1): 181–186. doi: 10.1021/acs.inorgchem.7b02371 [26] SHAO Z J, DUAN D F, MA Y B, et al. Ternary superconducting cophosphorus hydrides stabilized via lithium [J]. NPG Computational Materials, 2019, 5(1): 104. doi: 10.1038/s41524-019-0244-6 [27] SONG H, DUAN D F, CUI T, et al. High-Tc state of lanthanum hydrides [J]. Physical Review B, 2020, 102(1): 014510. doi: 10.1103/PhysRevB.102.014510 [28] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964 [29] EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760 [30] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001 [31] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8 [32] SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005 [33] XIE H, YAO Y S, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001 [34] STROBEL T A, GANESH P, SOMAYAZULU M, et al. Novel cooperative interactions and structural ordering in H2S-H2 [J]. Physical Review Letters, 2011, 107(25): 255503. doi: 10.1103/PhysRevLett.107.255503 [35] HUANG X L, WANG X, DUAN D F, et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility [J]. National Science Review, 2019, 6(4): 713–718. doi: 10.1093/nsr/nwz061 [36] ALEXANDER F, GONCHAROV S S, LOBANOV V B, et al. Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur [J]. Physical Review B, 2017, 95(14): 140101. doi: 10.1103/PhysRevB.95.140101 [37] PAPACONSTANTOPOULOS D A, KLEIN B M, MEHL M J, et al. Cubic H3S around 200 GPa: an atomic hydrogen superconductor stabilized by sulfur [J]. Physical Review B, 2015, 91(18): 184511. doi: 10.1103/PhysRevB.91.184511 [38] QUAN Y D, PICKETT W E. Van hove singularities and spectral smearing in high-temperature superconducting H3S [J]. Physical Review B, 2016, 93(10): 104526. doi: 10.1103/PhysRevB.93.104526 [39] HEIL C, BOERI L. Influence of bonding on superconductivity in high-pressure hydrides [J]. Physical Review B, 2015, 92(6): 060508. doi: 10.1103/PhysRevB.92.060508 [40] GE Y F, ZHANG F, YAO Y G. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution [J]. Physical Review B, 2016, 93(22): 224513. doi: 10.1103/PhysRevB.93.224513 [41] SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Room-temperature superconductivity in a carbonaceous sulfur hydride [J]. Nature, 2020, 586(7829): 373–377. doi: 10.1038/s41586-020-2801-z [42] SUN Y, TIAN Y F, JIANG B W, et al. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation [J]. Physical Review B, 2020, 101: 174102. doi: 10.1103/PhysRevB.101.174102 [43] CUI W W, BI T G, SHI J M, et al. Route to high-Tc superconductivity via CH4-intercalated H3S hydride perovskites [J]. Physical Review B, 2020, 101(13): 134504. doi: 10.1103/PhysRevB.101.134504 [44] LI X, HUANG X L, DUAN D F, et al. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure [J]. Nature Communications, 2019, 10(1): 3461. doi: 10.1038/s41467-019-11330-6 [45] ZHOU D, SEMENOK D V, DUAN D F, et al. Superconducting praseodymium superhydrides [J]. Science Advances, 2020, 6(9): eaax6849. doi: 10.1126/sciadv.aax6849 [46] ZHOU D, SEMENOK D V, XIE H, et al. High-pressure synthesis of magnetic neodymium polyhydrides [J]. Journal of the American Chemical Society, 2020, 142(6): 2803–2811. doi: 10.1021/jacs.9b10439 [47] SHAO Z J, DUAN D, MA Y, et al. Unique phase diagram and superconductivity of calcium hydrides at high pressures [J]. Inorganic Chemistry, 2019, 58(4): 2558–2564. doi: 10.1021/acs.inorgchem.8b03165 [48] WU G, HUANG X L, XIE H, et al. Unexpected calcium polyhydride CaH4: a possible route to dissociation of hydrogen molecules [J]. The Journal of Chemical Physics, 2019, 150(4): 044507. doi: 10.1063/1.5053650 [49] PÉPIN C M, GENESTE G, DEWAELE A, et al. Synthesis of FeH5: a layered structure with atomic hydrogen slabs [J]. Science, 2017, 357(6349): 382–385. doi: 10.1126/science.aan0961 [50] ZHONG X, WANG H, ZHANG J R, et al. Tellurium hydrides at high pressures: high-temperature superconductors [J]. Physical Review Letters, 2016, 116(5): 057002. doi: 10.1103/PhysRevLett.116.057002 [51] ZHOU D W, JIN X L, MENG X, et al. Ab initio study revealing a layered structure in hydrogen-rich KH6 under high pressure [J]. Physical Review B, 2012, 86(1): 014118. doi: 10.1103/PhysRevB.86.014118 [52] ZHANG S, WANG Y, ZHANG J, et al. Phase diagram and high-temperature superconductivity of compressed selenium hydrides [J]. Scientific Reports, 2015, 5(3): 1–6.