Experiment and Numerical Simulation on Oblique Penetrating Concrete Targets by a Special-Shaped Projectile with Ribbed Head
-
摘要: 为了探究一种新型头部带肋板的异形结构弹体斜贯穿混凝土靶的能力和弹道稳定性,利用一级轻气炮,开展了250~350 m/s速度范围内,以0°、15°和30°倾角贯穿300 mm厚混凝土靶的实验,并对同质量、同质心位置的尖卵形头部弹体和头部带肋板异形弹进行了不同速度和倾角下贯穿混凝土靶的模拟计算,模拟结果与实验结果吻合较好。实验和数值模拟结果表明:斜侵彻会降低弹体的贯穿能力,同时影响弹体姿态;在实验工况下,靶板贯穿只有开坑区和冲塞区,开坑区会增大弹体姿态角,而冲塞区会减小弹体姿态角;与尖卵形弹相比,虽然该异形弹头部凸台结构增加了弹靶作用面积导致侵彻能力下降,但是头部的肋板结构使得弹体侵入靶体时受到的偏转力矩更小,弹体有更为优异的抗偏转效果和弹道稳定性。Abstract: This paper is focused on a special-shaped projectile with ribbed plate head. In order to explore its penetration ability and trajectory stability, the 152 mm diameter light gas gun was used to launch projectiles to penetrate concrete targets of 300 mm thickness at different angles within the speed range of 250–350 m/s. In the meantime, numerical simulations of ogive-nose projectile and ribbed-head projectile perforating concrete targets with different velocities and inclination angles were implemented with LS-DYNA, and the simulation results are in good agreement with the experimental results. The experimental and simulation results show that oblique penetration will reduce the penetration ability and affect the trajectory stability of projectile. Under experimental conditions, the main damage of the target plate includes the open pit area and the shear plug area. The crater area will increase the attitude angle of projectile, while the caving zone will reduce the attitude angle. Compared with the ogive-nose projectile, although the penetration ability of the special-shaped projectile decreases due to the increase of the action area, the rib structure of the special-shaped projectile makes the missile body suffer less deflection moment when the projectile intrudes into the target, which makes the projectile body have an excellent anti-deflection effect and trajectory stability.
-
Key words:
- special-shaped projectile /
- oblique perforation /
- concrete targets /
- attitude angle
-
表 1 弹体贯穿混凝土靶实验结果
Table 1. Experimental results of projectiles penetrating concrete targets
No. $\,\beta $0/(°) $\,\beta $1/(°) v0/(m·s−1) v1/(m·s−1) d1/cm d2/cm 1 0 0 322.3 133.5 59.4 70.1 2 15 −4 330.8 106.4 53.6 62.0 3 15 −27 258.0 25.2 39.1 62.5 4 30 1 335.9 81.7 59.6 74.5 5 30 −31 259.6 13.4 55.5 55.9 表 2 HJC材料模型参数
Table 2. Parameters of HJC material model
$\,\rho $/(g·cm−3) G/GPa A B C N fc/MPa 2.52 14 0.79 1.6 0.007 0.61 38 T/MPa ɛf,min Smax EPSO pc/MPa μc pL/GPa 3.82 0.01 7 10−6 12.73 6.78×10−4 0.8 UL D1 D2 K1/GPa K2/GPa K3/GPa 0.11 0.037 1.0 85 −171 208 表 3 TCK材料模型参数
Table 3. Parameters of TCK material model
$\,\rho $/(g·cm−3) E/GPa G/GPa K/GPa ν k/m−3 m fc/MPa 2.52 33.6 14 18.68 0.2 5.753×1021 6 38 KIC/(MPa·m1/2) εf,min A B C N D1 D2 2.747 0.01 0.79 1.6 0.007 0.61 0.037 1.0 表 4 实验与数值模拟结果对比
Table 4. Comparison of experimental and numerical simulation results
No. v0/(m·s−1) $\,\beta $0/(°) v1/(m·s−1) Error of v1/% $\,\beta $1/(°) Error of $\,\beta $1 Exp. HJC TCK HJC TCK Exp. HJC TCK HJC TCK 1 322.3 0 133.5 126.4 132.4 5.3 0.8 0 0 0 0 0 2 330.8 15 106.4 103.9 112.1 2.3 5.4 −4 −6.9 −5.5 3.1 1.6 3 258.0 15 25.2 No perforation No perforation −27 No perforation No perforation 4 335.9 30 81.7 73.9 89.7 9.5 8.0 1 −4.7 −2.1 5.7 3.3 5 259.6 30 13.4 No perforation No perforation −31 No perforation No perforation -
[1] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. doi: 10.1016/0734-743X(94)80024-4 [2] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. doi: 10.1016/S0734-743X(02)00108-2 [3] CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile [J]. International Journal of Impact Engineering, 2004, 30(6): 617–637. doi: 10.1016/j.ijimpeng.2003.08.003 [4] 马兆芳, 段卓平, 欧卓成, 等. 弹体斜侵彻多层间隔混凝土靶实验和数值模拟 [J]. 北京理工大学学报, 2016, 36(10): 1001–1005. doi: 10.15918/j.tbit1001-0645.2016.10.003MA Z F, DUAN Z P, OU Z C, et al. Experimental and simulative research on projectile oblique penetration into concrete targets with multi-layered space structure [J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 1001–1005. doi: 10.15918/j.tbit1001-0645.2016.10.003 [5] 马兆芳. 动能弹斜侵彻有限厚混凝土靶体的弹道规律研究 [D]. 北京: 北京理工大学, 2016: 12-26.MA Z F. Investigation on trajectory regularity of kinetic energy projectile oblique penetration into concrete targets of finite thickness [D]. Beijing: Beijing Institute of Technology, 2016: 12-26. [6] 段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. doi: 10.11883/bzycj-2018-0411DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. doi: 10.11883/bzycj-2018-0411 [7] KONG X Z, FANG Q, HONG J, et al. Numerical study of the wake separation and reattachment effect on the trajectory of a hard projectile [J]. International Journal of Protective Structures, 2014, 5(1): 97–117. doi: 10.1260/2041-4196.5.1.97 [8] 邓佳杰, 张先锋, 刘闯, 等. 头部非对称刻槽弹体侵彻混凝土目标性能研究 [J]. 兵工学报, 2018, 39(7): 1249–1258. doi: 10.3969/j.issn.1000-1093.2018.07.001DENG J J, ZHANG X F, LIU C, et al. Research on penetration of asymmetrically grooved nose projectile into concrete target [J]. Acta Armamentarii, 2018, 39(7): 1249–1258. doi: 10.3969/j.issn.1000-1093.2018.07.001 [9] LIU J C, PI A G, HUANG F L. Penetration performance of double-ogive-nose projectiles [J]. International Journal of Impact Engineering, 2015, 84: 13–23. doi: 10.1016/J.IJIMPENG.2015.05.003 [10] AMON J, SCHWARTZ A, BRANDEIS Y. Missile warhead: US20150059610A1 [P]. 2015-03-05. [11] 李金柱, 吕中杰, 张宏松, 等. 弹丸非正侵彻贯穿混凝土靶实验研究 [J]. 弹箭与制导学报, 2013, 33(5): 86–90. doi: 10.3969/j.issn.1673-9728.2013.05.021LI J Z, LÜ Z J, ZHANG H S, et al. Non-ideal perforation experiments of concrete targets with steel projectiles [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(5): 86–90. doi: 10.3969/j.issn.1673-9728.2013.05.021 [12] JENA P K, JAGTAP N, KUMAR K S, et al. Some experimental studies on angle effect in penetration [J]. International Journal of Impact Engineering, 2010, 37(5): 489–501. doi: 10.1016/j.ijimpeng.2009.11.009 [13] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F [14] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. doi: 10.1016/S0734-743X(98)00008-6