靶机气囊缓冲着陆过程中的冲击特性

段文琪 蒲克强 方雄 党万腾 龙舒畅 姚小虎

段文琪, 蒲克强, 方雄, 党万腾, 龙舒畅, 姚小虎. 靶机气囊缓冲着陆过程中的冲击特性[J]. 高压物理学报, 2021, 35(6): 065301. doi: 10.11858/gywlxb.20210712
引用本文: 段文琪, 蒲克强, 方雄, 党万腾, 龙舒畅, 姚小虎. 靶机气囊缓冲着陆过程中的冲击特性[J]. 高压物理学报, 2021, 35(6): 065301. doi: 10.11858/gywlxb.20210712
DUAN Wenqi, PU Keqiang, FANG Xiong, DANG Wanteng, LONG Shuchang, YAO Xiaohu. Impact Characteristics of Drone Aircraft in Airbag Cushion Landing[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065301. doi: 10.11858/gywlxb.20210712
Citation: DUAN Wenqi, PU Keqiang, FANG Xiong, DANG Wanteng, LONG Shuchang, YAO Xiaohu. Impact Characteristics of Drone Aircraft in Airbag Cushion Landing[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065301. doi: 10.11858/gywlxb.20210712

靶机气囊缓冲着陆过程中的冲击特性

doi: 10.11858/gywlxb.20210712
基金项目: 中国博士后科学基金(2020M672614)
详细信息
    作者简介:

    段文琪(1996-),男,硕士,主要从事冲击动力学研究. E-mail:201820106587@mail.scut.edu.cn

    通讯作者:

    龙舒畅(1989-),男,博士,助理研究员,主要从事复合材料力学研究. E-mail:longsc@scut.edu.cn

  • 中图分类号: O347; V222

Impact Characteristics of Drone Aircraft in Airbag Cushion Landing

  • 摘要: 针对缓冲着陆过程中靶机气囊的瞬态动力学响应问题,采用显式动力计算方法和均压气囊模型分析靶机气囊缓冲着陆阶段机身、机翼在冲击作用下的动力学响应,得到靶机回收过程中的姿态与强度特性和气囊变化参数。探讨了气囊缓冲参数(排气口面积、气囊初始内压及排气阈值)和靶机状态等参数对靶机着陆过程中机身的影响。结果表明:标准工况下,经过气囊缓冲后的靶机姿态、强度符合安全着陆要求。通过分析着陆过程中的相关参数发现,气囊排气口面积对缓冲效果影响较大,气囊排气压力阈值和初始内压影响较小,同一气囊对靶机不同着陆初始速度的适应性高,带有俯仰角的靶机后着陆后机身部分区域的局部应力偏大。该方法可以广泛用于飞机气囊缓冲的动力学计算,结合气囊落震试验以获取相应的气囊参数和机身结构响应数据,为靶机设计提供依据。

     

  • 图  靶机气囊缓冲着陆模型

    Figure  1.  Drone aircraft and airbag cushion landing model

    图  机身内部结构示意图

    Figure  2.  Internal structure of fuselage

    图  着陆过程中的质心速度-时间变化曲线

    Figure  3.  Velocity-time curve of mass center during landing

    图  靶机着陆缓冲减速后的小角度侧偏

    Figure  4.  Small angle cornering of drone aircraftafter landing buffer deceleration

    图  落震试验与模拟着陆过程中质心处的过载曲线

    Figure  5.  Overload curves at the center of mass duringlanding process in simulation and drop test

    图  靶机着陆0.084 s时的Mises应力分布

    Figure  6.  Mises stress distribution of the drone aircraft landing at 0.084 s

    图  前机身腹部的应力和应变分布

    Figure  7.  Stress and strain distribution of front fuselage underpart

    图  前、后机身上下梁上不同位置的应力

    Figure  8.  Stress at upper and lower beams of front and rear fuselage

    图  中机身和机翼梁上不同位置的应力

    Figure  9.  Stress at upper and lower beams of middle fuselage and wing

    图  10  中机身和机翼的应力分布

    Figure  10.  Stress distribution of middle fuselage and wing

    图  11  着陆前后气囊压力和法向接触力曲线

    Figure  11.  Pressure and normal contact force curves of front and rear airbags during landing

    图  12  排气口面积不同时靶机着陆过程中重心处速度 (a) 和过载 (b) 的变化曲线

    Figure  12.  Velocity (a) and overload (b) curves at the mass center of drone aircraft during landing with different exhaust port area

    图  13  排气口面积不同时靶机着陆过程中前后气囊的压力峰值与机身的Mises应力对比

    Figure  13.  Comparison of front and rear airbags’ peak pressure and Mises stress of fuselage during landing with different exhaust port areas

    图  14  不同初始着陆速度下靶机重心的速度变化曲线

    Figure  14.  Velocity curves of drone’s center of gravity at different initial landing velocities

    图  15  带有俯仰角的靶机着陆示意图

    Figure  15.  Sketch of drone aircraft landing with pitch angle

    图  16  带有俯仰角的靶机着陆过程中的速度变化曲线

    Figure  16.  Velocity curves of drone aircraft landing with pitch angle

    表  1  靶机材料的相关参数

    Table  1.   Aircraft material parameters

    MaterialDensity/(g·cm−3)Elastic modulus/
    GPa
    Poisson’s ratioYield stress/
    MPa
    Aluminium alloy2.800660.330325
    Alloy structural steel7.760196 0.300835
    Glass fiber composite2.030230.074
    Carbon fiber composite1.560580.074
    下载: 导出CSV

    表  2  不同缓冲工况的相关参数

    Table  2.   Relevant parameters of different cushion conditions

    Case No.Orifice
    area/mm2
    Initial internal
    pressure/MPa
    Discharge pressure
    threshold/kPa
    Landing
    speed/(m·s−1
    Pitch
    angle/(°)
    100.10110.160
    21696.40.10110.160
    32827.40.10110.160
    43958.40.10110.160
    52827.40.10610.160
    62827.40.10810.160
    72827.40.11010.160
    82827.40.10130.360
    92827.40.10150.560
    10 2827.40.10110.140
    11 2827.40.10110.150
    12 2827.40.10110.170
    13 2827.40.10110.165
    14 2827.40.10110.16−5
    15 2827.40.10110.168
    16 2827.40.10110.16−8
    下载: 导出CSV
  • [1] 温金鹏, 李斌, 杨智春. 缓冲气囊冲击减缓研究进展 [J]. 宇航学报, 2010, 31(11): 2438–2447. doi: 10.3873/j.issn.1000-1328.2010.11.002

    WEN J P, LI B, YANG Z C. Progress of study on impact attenuation capability of airbag cushion system [J]. Journal of Astronautics, 2010, 31(11): 2438–2447. doi: 10.3873/j.issn.1000-1328.2010.11.002
    [2] 戈嗣诚, 施允涛. 无人机回收气囊缓冲特性研究 [J]. 南京航空航天大学学报, 1999, 31(4): 458–463. doi: 10.3969/j.issn.1005-2615.1999.04.016

    GE S C, SHI Y T. Study on cushioning characteristics of air bag for RPV recovery [J]. Journal of Nanjing University of Aeronautics & Astronautics, 1999, 31(4): 458–463. doi: 10.3969/j.issn.1005-2615.1999.04.016
    [3] 邵志建, 裴锦华. 某无人机横向圆柱排气式气囊着陆装置缓冲过程研究 [J]. 航天返回与遥感, 2016, 37(2): 26–33. doi: 10.3969/j.issn.1009-8518.2016.02.004

    SHAO Z J, PEI J H. Simulation of bi-cylindrical airbag cushioning system for pilotless aircraft [J]. Spacecraft Recovery & Remote Sensing, 2016, 37(2): 26–33. doi: 10.3969/j.issn.1009-8518.2016.02.004
    [4] NEFSKE D J. A basic airbag model [C]//National Automobile Engineering Meeting.1972.
    [5] WANG J T, NEFSKE D J. A new CAL3D airbag inflation model [C]//SAE International Congress and Exposition, 1988.
    [6] 张红英, 杨璐瑜, 李姝磊. 空降空投中的气囊缓冲包装技术 [J]. 包装工程, 2016, 37(17): 20–24. doi: 10.19554/j.cnki.1001-3563.2016.17.006

    ZHANG H Y, YANG L Y, LI S L. Airbag cushion packaging technology in airborne airdrop [J]. Packaging Engineering, 2016, 37(17): 20–24. doi: 10.19554/j.cnki.1001-3563.2016.17.006
    [7] 周强, 谭百贺. 可控排气式气囊着陆缓冲特性研究 [J]. 应用力学学报, 2019, 36(3): 687–690. doi: 10.11776/cjam.36.03.D039

    ZHOU Q, TAN B H. Study on landing buffer characters of a controllable vent airbag [J]. Chinese Journal of Applied Mechanics, 2019, 36(3): 687–690. doi: 10.11776/cjam.36.03.D039
    [8] MARKLUND P O, NILSSON L. Simulation of airbag inflation processes using a coupled fluid structure approach [J]. Computational Mechanics, 2002, 29(4/5): 289–297. doi: 10.1007/S00466-002-0341-Z
    [9] 周默涵, 狄长春, 杨玉良, 等. 圆柱筒式空投气囊缓冲模拟 [J]. 包装工程, 2017, 38(17): 128–132. doi: 10.19554/j.cnki.1001-3563.2017.17.027

    ZHOU M H, DI C C, YANG Y L, et al. Simulation of cushion characteristic of cylindrical airdrop airbag [J]. Packaging Engineering, 2017, 38(17): 128–132. doi: 10.19554/j.cnki.1001-3563.2017.17.027
    [10] SIMULIA D C S. Abaqus analysis user’s manual [EB/OL]. 2019. https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch18s02abm24.html.
    [11] 冯晓伟, 卢永刚, 李永泽. 飞机目标在爆炸冲击波作用下的毁伤效应评估方法 [J]. 高压物理学报, 2019, 33(4): 045101. doi: 10.11858/gywlxb.20180687

    FENG X W, LU Y G, LI Y Z. Damage assessment method of aircraft targets under blast wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045101. doi: 10.11858/gywlxb.20180687
    [12] 周旋, 周仕明, 李道奎. 着陆缓冲气囊的无反弹设计方法研究 [J]. 载人航天, 2020, 26(2): 190–199. doi: 10.3969/j.issn.1674-5825.2020.02.009

    ZHOU X, ZHOU S M, LI D K. Research on design methods of landing impact attenuating airbag without rebound [J]. Manned Spaceflight, 2020, 26(2): 190–199. doi: 10.3969/j.issn.1674-5825.2020.02.009
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  369
  • PDF下载量:  38
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-02-21

目录

    /

    返回文章
    返回