层状千枚岩的断裂特性

蔺海晓 钱立振 程龙 郭腾飞

蔺海晓, 钱立振, 程龙, 郭腾飞. 层状千枚岩的断裂特性[J]. 高压物理学报, 2021, 35(5): 054206. doi: 10.11858/gywlxb.20210707
引用本文: 蔺海晓, 钱立振, 程龙, 郭腾飞. 层状千枚岩的断裂特性[J]. 高压物理学报, 2021, 35(5): 054206. doi: 10.11858/gywlxb.20210707
LIN Haixiao, QIAN Lizhen, CHENG Long, GUO Tengfei. Fracture Characteristics of Layered Phyllite[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054206. doi: 10.11858/gywlxb.20210707
Citation: LIN Haixiao, QIAN Lizhen, CHENG Long, GUO Tengfei. Fracture Characteristics of Layered Phyllite[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054206. doi: 10.11858/gywlxb.20210707

层状千枚岩的断裂特性

doi: 10.11858/gywlxb.20210707
基金项目: 国家自然科学基金(41772163,51674100)
详细信息
    作者简介:

    钱立振(1993-),男,硕士研究生,主要从事煤岩体损伤力学研究. E-mail:1668624368@qq.com

    通讯作者:

    蔺海晓(1978-),男,副教授,主要从事煤岩体损伤力学研究. E-mail:hpulhx@hpu.edu.cn

  • 中图分类号: O347.3;TU45

Fracture Characteristics of Layered Phyllite

  • 摘要: 采用中心直切槽半圆盘层状岩样测试了层状千枚岩的断裂性能,并基于黏结单元建立了层状岩石的有限元数值计算模型,系统研究了层理倾角、层理强度、层理间距及切缝倾角等参数对层状千枚岩断裂特性的影响。结果表明:当层理倾角在0°~90°范围内时,Ⅰ型断裂韧度逐渐增大,峰值载荷和峰值位移也呈增大趋势;层理倾角为零时,发生张拉破坏。层理倾角在15°~45°时,剪切破坏占主导;层理倾角在60°~90°时,张拉破坏占主导。层理倾角为零时,破坏模式受层理强度影响较小;层理倾角分别为15°和30°时,随着层理强度增大,试样由剪切破坏向拉-剪耦合破坏演化;层理倾角在45°~90°时,试样均呈现拉-剪耦合破坏,且随着层理强度增大,试样有向拉伸破坏为主演化的趋势。层理间距较小时,裂纹呈沿层–穿层阶梯状扩展趋势明显;切缝倾角较大时,裂纹穿层扩展趋势明显。

     

  • 图  不同层理倾角的岩样

    Figure  1.  Rock specimens with different bedding dip angles

    图  试样的几何尺寸和加载方向

    Figure  2.  Geometrical dimensions and loading direction of the specimens

    图  应力强度因子计算模型

    Figure  3.  Calculation model of stress intensity factor

    图  不同层理倾角试样的断裂韧度

    Figure  4.  Fracture toughness of specimens withdifferent beddings dip angles

    图  不同层理倾角试样的载荷-位移曲线

    Figure  5.  Load-displacement curves of specimens with different beddings dip angles

    图  黏结单元模型

    Figure  6.  Model of bonding element

    图  黏结单元线性牵引分离定律

    Figure  7.  Linear traction separation law of bonding element

    图  试样的数值模型

    Figure  8.  Numerical model of specimens

    图  不同层理倾角页岩的断裂破坏[29]

    Figure  9.  Fracture failure of shale with different bedding dip angles[29]

    表  1  中心直切槽半圆盘无量纲应力强度因子结果比较[27]

    Table  1.   Comparison of dimensionless stress intensity factor for a half disk with a central straight slotted[27]

    a/RS/RYError/%
    This paperRef.[27]
    0.10.52.7522.7241.03
    0.30.52.4932.538−1.77
    0.80.512.850 12.665 1.46
    下载: 导出CSV

    表  2  模型中的单元力学细观参数

    Table  2.   Microscopic parameters of element mechanics in the model

    Element typeLocationElastic modulus/GPaPoisson’s ratioDensity/(kg·mm−3)
    Entity elementRock material37.760.232.623 × 103
    下载: 导出CSV
    Element typeLocationTensile strength/MPaShear strength/MPaNormal stiffness/(MPa·mm−1)Tangential stiffness/(MPa·mm−1)Failure displacement/mm
    Cohensive element
    Bedding3.39944238380.05
    Stroma6.61937768153530.10
    下载: 导出CSV

    表  3  不同层理倾角试样的试验与数值模拟结果对比

    Table  3.   Comparison between experimental and numerical simulationresults of specimens with different bedding dip angles

    Bedding dip angle/(°)Load-displacement curvesTest failure result Simulated failure result
    0
    15
    30
    45
    60
    75
    90
    下载: 导出CSV

    表  4  各层理倾角试样在不同层理强度下的数值模拟破坏结果

    Table  4.   Numerical failures of each bedding dip angles' specimen under different bedding strength

    Bedding dip angle/(°)
    Simulated result
    0.50.81.11.5
    0
    15
    30
    45
    60
    75
    90
    下载: 导出CSV

    表  5  各层理倾角试样在不同层理间距下的数值模拟破坏结果

    Table  5.   Numerical simulation failure results of each bedding dip angles' specimen under different bedding distance

    Bedding dip angle/(°)
    Simulated result
    d=3 mmd=5 mmd=8 mmd=12 mm
    0
    15
    30
    45
    60
    75
    90
    下载: 导出CSV

    表  6  各层理倾角试样在不同切缝倾角下的数值模拟破坏结果

    Table  6.   Numerical failures of each bedding dip angles' specimen under different cutting seam dip angles

    Bedding dip angle/(°)
    Simulated result
    β=0°β=30°β=45°β=60°
    0
    15
    30
    45
    60
    75
    90
    下载: 导出CSV
  • [1] 姜永东, 鲜学福, 郭臣业. 层状岩质边坡失稳的燕尾突变模型 [J]. 重庆大学学报, 2008, 31(5): 553–557. doi: 10.11835/j.issn.1000-582X.2008.05.018

    JIANG Y D, XIAN X F, GUO C Y. A swallowtail catastrophe model on destabilization of stratified rock slope [J]. Journal of Chongqing University, 2008, 31(5): 553–557. doi: 10.11835/j.issn.1000-582X.2008.05.018
    [2] 谢和平, 高峰, 鞠杨, 等. 页岩储层压裂改造的非常规理论与技术构想 [J]. 工程科学与技术, 2012, 44(6): 1–6. doi: 10.15961/j.jsuese.2012.06.006

    XIE H P, GAO F, JU Y, et al. Unconventional theories and strategies for fracturing treatments of shale gas strata [J]. Advanced Engineering Sciences, 2012, 44(6): 1–6. doi: 10.15961/j.jsuese.2012.06.006
    [3] CEN C S, PAN E N, AMADEI B. Determination of deformability and tensile strength of anisotropic rock using Brazilian tests [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 43–61. doi: 10.1016/S0148-9062(97)00329-X
    [4] 刘运思, 傅鹤林, 饶军应, 等. 不同层理方位影响下板岩各向异性巴西圆盘劈裂试验研究 [J]. 岩石力学与工程学报, 2012, 31(4): 785–791. doi: 10.3969/j.issn.1000-6915.2012.04.018

    LIU Y S, FU H L, RAO J Y, et al. Research on brazilian disc splitting tests for anisotropy of slate under influence of different bedding orientations [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 785–791. doi: 10.3969/j.issn.1000-6915.2012.04.018
    [5] 李德建, 祁浩, 李春晓, 等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究 [J]. 矿业科学学报, 2020, 5(2): 150–159. doi: 10.19606/j.cnki.jmst.2020.02.003

    LI D J, QI H, LI C X, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes [J]. Journal of Mining Science and Technology, 2020, 5(2): 150–159. doi: 10.19606/j.cnki.jmst.2020.02.003
    [6] 殷志强, 谢广祥, 胡祖祥, 等. 不同瓦斯压力下煤岩三点弯曲断裂特性研究 [J]. 煤炭学报, 2016, 41(2): 424–431. doi: 10.13225/j.cnki.jccs.2015.0598

    YIN Z Q, XIE G X, HU Z X, et al. Investigation on fracture mechanism of coal rock on three-point bending tests under different gas pressures [J]. Journal of China Coal Society, 2016, 41(2): 424–431. doi: 10.13225/j.cnki.jccs.2015.0598
    [7] 张宁博, 单仁亮, 赵善坤, 等. 不同煤岩介质弯载作用下的断裂特征 [J]. 煤炭学报, 2020, 45(Suppl 2): 671–681.

    ZHANG N B, SHAN R L, ZHAO S K, et al. Investigation on cracking features of different patterns of rock under bending load [J]. Journal of China Coal Society, 2020, 45(Suppl 2): 671–681.
    [8] 魏炯, 朱万成, 李如飞, 等. 岩石抗拉强度和断裂韧度的三点弯曲试验研究 [J]. 水利与建筑工程学报, 2016, 14(3): 128–132, 142. doi: 10.3969/j.issn.1672-1144.2016.03.024

    WEI J, ZHU W C, LI R F, et al. Experiment of the tensile strength and fracture toughness of rock using notched three point bending test [J]. Journal of Water Resources and Architectural Engineering, 2016, 14(3): 128–132, 142. doi: 10.3969/j.issn.1672-1144.2016.03.024
    [9] 李柯萱, 李铁. 不同加载速率下砂岩弯曲破坏的细观机理 [J]. 爆炸与冲击, 2019, 39(4): 043101. doi: 10.11883/bzycj-2018-0178

    LI K X, LI T. Micro-mechanism of bending failure of sandstone under different loadingrates [J]. Explosion and Shock Waves, 2019, 39(4): 043101. doi: 10.11883/bzycj-2018-0178
    [10] 姚哨峰, 张振南, 葛修润, 等. 大理岩断裂能与细观结构几何特征相关性 [J]. 岩土力学, 2016, 37(8): 2341–2346. doi: 10.16285/j.rsm.2016.08.028

    YAO S F, ZHANG Z N, GE X R, et al. Correlation between fracture energy and geome-trical characteristic of mesostructure of marble [J]. Rock and Soil Mechanics, 2016, 37(8): 2341–2346. doi: 10.16285/j.rsm.2016.08.028
    [11] 左建平, 周宏伟, 刘瑜杰. 不同温度下砂岩三点弯曲破坏的特征参量研究 [J]. 岩石力学与工程学报, 2010, 29(4): 705–712.

    ZUO J P, ZHOU H W, LIU Y J. Research on characteristic parameters of sandstone three-point bending failure under different temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 705–712.
    [12] 邓朝福, 刘建锋, 陈亮, 等. 不同粒径花岗岩断裂力学行为及声发射特征研究 [J]. 岩土力学, 2016, 37(8): 2313–2320. doi: 10.16285/j.rsm.2016.08.025

    DENG C F, LIU J F, CHEN L, et al. Fracture mechanical behaviors and acoustic emission characteristics of Beishan granites with different particle sizes [J]. Rock and Soil Mechanics, 2016, 37(8): 2313–2320. doi: 10.16285/j.rsm.2016.08.025
    [13] 徐晓云, 张明明. T应力对半圆盘岩石试件裂纹断裂及扩展机理研究 [J]. 煤炭科学技术, 2018, 46(3): 80–84. doi: 10.13199/j.cnki.cst.2018.03.013

    XU X Y, ZHANG M M. Study on T stress affected to crack fracturing and extension mechanism of half disc rock specimen [J]. Coal Science and Technology, 2018, 46(3): 80–84. doi: 10.13199/j.cnki.cst.2018.03.013
    [14] 张盛, 王龙飞, 常旭, 等. 中心直裂纹半圆盘试样的石灰岩断裂韧度尺寸效应试验研究 [J]. 岩土力学, 2019, 40(5): 1740–1749, 1760. doi: 10.16285/j.rsm.2017.2555

    ZHANG S, WANG L F, CHANG X, et al. Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740–1749, 1760. doi: 10.16285/j.rsm.2017.2555
    [15] 赵平劳. 层状结构岩石抗剪强度各向异性试验研究 [J]. 兰州大学学报(自然科学版), 1990, 26(4): 135–139. doi: 10.13885/j.is-sn.0455-2059.1990.04.024

    ZHAO P L. The experimental study of anisotropy of shear strength of bedded rock [J]. Journal of Lanzhou University (Natural Sciences), 1990, 26(4): 135–139. doi: 10.13885/j.is-sn.0455-2059.1990.04.024
    [16] 裴建良, 苏立, 刘建锋, 等. 层状大理岩间接拉伸试验及断口形貌和断裂机理分析 [J]. 四川大学学报(工程科学版), 2014, 46(4): 39–45. doi: 10.15961/j.jsuese.2014.04.002

    PEI J L, SU L, LIU J F, et al. Indirect tensile test of layered marble and analysis of fracture morphology and mechanism [J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(4): 39–45. doi: 10.15961/j.jsuese.2014.04.002
    [17] 裴建良, 刘建锋, 徐进. 层状大理岩卸荷力学特性试验研究 [J]. 岩石力学与工程学报, 2009, 28(12): 2496–2502. doi: 10.3321/j.issn:1000-6915.2009.12.016

    PEI J L, LIU J F, XU J. Experimental study of mechanical properties of layered marble under unloading condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2496–2502. doi: 10.3321/j.issn:1000-6915.2009.12.016
    [18] NASSERI M H B, RAO K S, RAMAMURTHY T. Anisotropic strength and deformational behavior of Himalayan schists [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 3–23. doi: 10.1016/S1365-1609(02)00103-X
    [19] CHO J W, KIM H, JEON S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158–169. doi: 10.1016/j.ijrmms.2011.12.004
    [20] 吕有厂. 层理性页岩断裂韧性的加载速率效应试验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1359–1370. doi: 10.13722/j.cnki.jrme.2017.1421

    LÜ Y C. Effect of bedding plane direction on fracture toughness of shale under different loading rates [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1359–1370. doi: 10.13722/j.cnki.jrme.2017.1421
    [21] 赵子江, 刘大安, 崔振东, 等. 半圆盘三点弯曲法测定页岩断裂韧度(KIC)的实验研究 [J]. 岩土力学, 2018, 39(Suppl 1): 258–266. doi: 10.16285/j.rsm.2018.0571

    ZHAO Z J, LIU D A, CUI Z D, et al. Experimental study of determining fracture toughness KIC of shale by semi-disk three-point bending [J]. Rock and Soil Mechanics, 2018, 39(Suppl 1): 258–266. doi: 10.16285/j.rsm.2018.0571
    [22] 衡帅, 刘晓, 李贤忠, 等. 张拉作用下页岩裂缝扩展演化机制研究 [J]. 岩石力学与工程学报, 2019, 38(10): 2031–2044. doi: 10.13722/j.cnki.jrme.2019.0270

    HENG S, LIU X, LI X Z, et al. Study on the fracture propagation mechanisms of shale under tension [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2031–2044. doi: 10.13722/j.cnki.jrme.2019.0270
    [23] 赵小平, 左建平, 裴建良. 锦屏层状大理岩断裂机制的细观试验研究 [J]. 岩石力学与工程学报, 2012, 31(3): 534–542. doi: 10.3969/j.issn.1000-6915.2012.03.011

    ZHAO X P, ZUO J P, PEI J L. Meso-experimental study of fracture mechanism of bedded marble in Jinping [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 534–542. doi: 10.3969/j.issn.1000-6915.2012.03.011
    [24] 黎立云, 宁海龙, 刘志宝, 等. 层状岩体断裂破坏特殊现象及机制分析 [J]. 岩石力学与工程学报, 2006, 25(Suppl 2): 3933–3938. doi: 10.3321/j.issn:1000-6915.2006.z2.093

    LI L Y, NING H L, LIU Z B, et al. Special phenomena of fracture and mechanism analysis of layered rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Suppl 2): 3933–3938. doi: 10.3321/j.issn:1000-6915.2006.z2.093
    [25] 潘睿, 张广清. 层状岩石断裂能各向异性对水力裂缝扩展路径影响研究 [J]. 岩石力学与工程学报, 2018, 37(10): 2309–2318. doi: 10.13722/j.cnki.jrme.2018.0461

    PAN R, ZHANG G Q. The influence of fracturing energy anisotropy on hydraulic fracturing path in layered rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2309–2318. doi: 10.13722/j.cnki.jrme.2018.0461
    [26] KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen [J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. doi: 10.1007/s00603-013-0422-7
    [27] TUTLUOGLU L, KELES C. Mode I fracture toughness determination with straight notched disk bending method [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1248–1261. doi: 10.1016/j.ijrmms.2011.09.019
    [28] CHANG X, GUO T F, ZHANG S. Cracking behaviours of layered specimen with an interface crack in Brazilian tests [J]. Engineering Fracture Mechanics, 2020, 228: 106904. doi: 10.1016/j.engfracmech.2020.106904
    [29] DOU F K, WANG J G, ZHANG X X, et al. Effect of joint parameters on fracturing behavior of shale in notched three-point-bending test based on discrete element model [J]. Engineering Fracture Mechanics, 2019, 205: 40–56. doi: 10.1016/j.engfracmech.2018.11.017
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  768
  • HTML全文浏览量:  363
  • PDF下载量:  26
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-01-28

目录

    /

    返回文章
    返回