基于Galerkin法研究应力波作用下复合材料板的动力学失稳

王志鹏 韩志军 王龙飞

王志鹏, 韩志军, 王龙飞. 基于Galerkin法研究应力波作用下复合材料板的动力学失稳[J]. 高压物理学报, 2021, 35(5): 054204. doi: 10.11858/gywlxb.20210705
引用本文: 王志鹏, 韩志军, 王龙飞. 基于Galerkin法研究应力波作用下复合材料板的动力学失稳[J]. 高压物理学报, 2021, 35(5): 054204. doi: 10.11858/gywlxb.20210705
WANG Zhipeng, HAN Zhijun, WANG Longfei. Dynamic Instability of Composite Plate under Stress Wave Based on Galerkin Method[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054204. doi: 10.11858/gywlxb.20210705
Citation: WANG Zhipeng, HAN Zhijun, WANG Longfei. Dynamic Instability of Composite Plate under Stress Wave Based on Galerkin Method[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054204. doi: 10.11858/gywlxb.20210705

基于Galerkin法研究应力波作用下复合材料板的动力学失稳

doi: 10.11858/gywlxb.20210705
基金项目: 国家自然科学基金(11802195)
详细信息
    作者简介:

    王志鹏(1994-),男,硕士,主要从事非线性动力屈曲研究. E-mail:694596123@qq.com

    通讯作者:

    韩志军(1964-),男,博士,教授,主要从事非线性动力屈曲研究. E-mail:13073578705@126.com

  • 中图分类号: O343.5

Dynamic Instability of Composite Plate under Stress Wave Based on Galerkin Method

  • 摘要: 基于Kirchhoff薄板理论和Hamilton原理,考虑应力波效应,对含初始几何缺陷的三边简支、一边固支的复合材料板,建立了振动控制方程,得到了其屈曲临界荷载表达式。采用MATLAB编程进行数值计算,讨论了初始几何缺陷、初相位、铺层角度、屈曲模态阶数及铺层层数对板屈曲临界荷载的影响。结果表明:复合材料板的屈曲临界载荷随临界长度增大、铺设厚度减小、初始几何缺陷系数增大、振型函数初相位减小而减小。此外,复合材料板的各层铺层角度与荷载作用方向的夹角越小,屈曲临界载荷越大,当板的对称铺设层数达到7层时,临界荷载趋于稳定。

     

  • 图  复合材料板结构示意图

    Figure  1.  Schematic diagram of composite plate structure

    图  应力波传播示意图

    Figure  2.  Schematic diagram of stress wave propagation

    图  x方向模态取值增大时板的屈曲模态

    Figure  3.  Buckling mode of composite plate with increasing mode value in x direction

    图  不同初始缺陷系数条件下NcrLcr的关系曲线

    Figure  4.  Relationship between Ncr and Lcr under different initial defect coefficients

    图  x方向模态阶数不同时NcrLcr的关系曲线

    Figure  5.  Relationship between Ncr and Lcr with different order of modes in x direction

    图  y方向模态阶数不同时NcrLcr的关系曲线

    Figure  6.  Relationship between Ncr and Lcr with different order of modes in y direction

    图  不同铺层角度条件下NcrLcr的关系曲线

    Figure  7.  Relationship between Ncr and Lcr under different laying angles

    图  不同初相位条件下NcrLcr的关系曲线

    Figure  8.  Relationship between Ncr and Lcr under the condition of initial phase of different mode functions

    图  不同铺层层数下NcrLcr的关系曲线

    Figure  9.  Relationship between Ncr and Lcr under different laying modes

    图  10  不同铺设厚度下NcrLcr的关系曲线

    Figure  10.  Relationship between Ncr and Lcr under different thicknesses

    表  1  复合材料板参数[21]

    Table  1.   Material parameters of composite plate[21]

    E1/GPaE2/GPaG12/GPaμ12La/mLb/m
    140.08.65.00.350.600.50
    下载: 导出CSV

    表  2  算例分析参数表

    Table  2.   Example analysis parameter table

    GroupInitial defect
    coefficient
    Order of modeLaying angle/(°)Initial phaseNumber of
    layers laid
    Thickness
    of the plate/m
    x directiony direction
    AVariablei = 1j = 1[0, 0, 0, 0, 0]$ {\text{π}}$/250.01
    B0.1Variablej = 1[0, 0, 0, 0, 0]$ {\text{π}}$/250.01
    C0.1i =1Variable[0, 0, 0, 0, 0]$ {\text{π}}$/250.01
    D0.1i =1j = 1Variable$ {\text{π}}$/250.01
    E0.1i =1j = 1[0, 0, 0, 0, 0]Variable50.01
    F0.1i =1j = 1[0, 0, 0, 0, 0]$ {\text{π}}$/2Variable0.01
    G0.1i =1j = 1[0, 0, 0, 0, 0]$ {\text{π}}$/25Variable
    下载: 导出CSV
  • [1] GALOS J. Thin-ply composite laminates: a review [J]. Composite Structures, 2020, 236: 11192. doi: 10.1016/j.compstruct.2020.111920
    [2] KAYRAN A, VINSON J R. Free vibration analysis of laminated composite truncated circular conical shells [J]. AIAA Journal, 1990, 28(7): 1259–1269. doi: 10.2514/3.25203
    [3] SUN J B, XU X S, LIM C W. Stress waves and dynamic buckling of functionally graded cylindrical shells under combined axial impact and thermal load [J]. Acta Mechanica, 2015, 226(5): 1323–1339. doi: 10.1007/s00707-014-1244-8
    [4] 毛柳伟, 王安稳, 邓磊, 等. 应力波作用下弹性直杆动力分叉屈曲研究 [J]. 振动与冲击, 2014, 33(6): 174–178. doi: 10.13465/j.cnki.jvs.2014.06.032

    MAO L W, WANG A W, DENG L, et al. Dynamic bifurcation buckling of elastic rods under stress wave [J]. Journal of Vibration and Shock, 2014, 33(6): 174–178. doi: 10.13465/j.cnki.jvs.2014.06.032
    [5] LEPIK Ü. Dynamic buckling of elastic-plastic beams including effects of axial stress waves [J]. International Journal of Impact Engineering, 2001, 25(6): 537–552. doi: 10.1016/S0734-743X(00)00070-1
    [6] ZHANG S, XIAO H, QIANG F W, et al. Analytical model and numerical simulation for the effect of uncertain initial geometrical imperfection on the buckling of thin plate [C]//Proceedings of the 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology. Taiyuan: Computer Science and Electronic Technology International Society, 2017: 8.
    [7] ABDELAZIZ H H, MEZIANE M A A, BOUSAHLA A A, et al. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions [J]. Steel and Composite Structures, 2017, 25(6): 693–704. doi: 10.12989/SCS.2017.25.6.693
    [8] KOUCHAKZADEH M A, RAHGOZAR M, BOHLOOLY M. Buckling of laminated composite plates with elastically restrained boundary conditions [J]. Structural Engineering and Mechanics, 2020, 74(5): 577–588. doi: 10.12989/SEM.2020.74.5.577
    [9] CZAPSKI P, KUBIAK T. Influence of residual stresses on the buckling behaviour of thin-walled, composite tubes with closed cross-section: numerical and experimental investigations [J]. Composite Structures, 2019, 229: 111407. doi: 10.1016/j.compstruct.2019.111407
    [10] KUO S Y. Thermal buckling, vibration and flutter of composite laminates containing two non-uniformly distributed fibers [J]. Journal of Aeronautics, Astronautics and Aviation, 2016, 48(3): 173–182. doi: 10.6125/16-0505-888
    [11] VILLARREAL E, ABAJO D. Buckling and modal analysis of rotationally restrained orthotropic plates [J]. Progress in Aerospace Sciences, 2015, 78: 116–130. doi: 10.1016/j.paerosci.2015.06.005
    [12] EFTEKHARI S A, JAFARI A A. Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates [J]. Applied Mathematics and Mechanics, 2012, 33(1): 81–98. doi: 10.1007/s10483-012-1535-6
    [13] REHMAN S M, RAO C S. Vibration buckling and fracture analysis of a cracked cylindrical shell [J]. International Journal of Design Engineering, 2017, 7(1): 33–53. doi: 10.1504/IJDE.2017.10006427
    [14] SAYYAD A S, SHINDE B M, GHUGAL Y M. Bending, vibration and buckling of laminated composite plates using a simple four variable plate theory [J]. Latin American Journal of Solids and Structures, 2019, 13(3): 516–535. doi: 10.1590/1679-78252241
    [15] 王震鸣. 复合材料力学和复合材料结构力学 [M]. 北京: 机械工业出版社, 1991.

    WANG Z M. Composite materials and structural mechanics [M]. Beijing: China Machine Press, 1991.
    [16] 沈观林, 胡更开. 复合材料力学 [M]. 北京: 清华大学出版社, 2006.

    SHEN G L, HU G K. Mechanics of composite materials [M]. Beijing: Tsinghua University Press, 2006.
    [17] 王鑫. 功能梯度材料板动力屈曲及混沌行为的研究 [D]. 太原: 太原理工大学, 2018.

    WANG X. Research on dynamic buckling and chaos behavior of functionally graded materials plate [D]. Taiyuan: Taiyuan University of Technology, 2018.
    [18] AMABILI M. Nonlinear vibrations and stability of shells and plates [M]. Cambridge: Cambridge University Press, 2008.
    [19] 顾明剑, 张其林. 引入一阶屈曲模态作为初始缺陷的研究[C]//第五届全国现代结构工程学术研讨会论文集. 广州: 全国现代结构工程学术研讨会学术委员会, 2005.
    [20] KHDEIR A A, REDDY J N, FREDERICK D. A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories [J]. International Journal of Engineering Science, 1989, 27(11): 1337–1351. doi: 10.1016/0020-7225(89)90058-X
    [21] 矫桂琼, 贾普荣. 复合材料力学 [M]. 西安: 西北工业大学出版社, 2008.

    JIAO G Q, JIA P R. Mechanics of composite materials [M]. Xi’an: Northwestern Polytechnical University Press, 2008.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2762
  • HTML全文浏览量:  973
  • PDF下载量:  24
出版历程
  • 收稿日期:  2021-01-10
  • 修回日期:  2021-02-05

目录

    /

    返回文章
    返回