12.7 mm穿燃弹对半无限厚45钢的侵彻行为

马铭辉 李烨 蒋招绣 王晓东 任文科 高光发

马铭辉, 李烨, 蒋招绣, 王晓东, 任文科, 高光发. 12.7 mm穿燃弹对半无限厚45钢的侵彻行为[J]. 高压物理学报, 2021, 35(5): 055104. doi: 10.11858/gywlxb.20210703
引用本文: 马铭辉, 李烨, 蒋招绣, 王晓东, 任文科, 高光发. 12.7 mm穿燃弹对半无限厚45钢的侵彻行为[J]. 高压物理学报, 2021, 35(5): 055104. doi: 10.11858/gywlxb.20210703
MA Minghui, LI Ye, JIANG Zhaoxiu, WANG Xiaodong, REN Wenke, GAO Guangfa. Penetration Behavior of 12.7 mm Projectile into Semi Infinite 45 Steel[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055104. doi: 10.11858/gywlxb.20210703
Citation: MA Minghui, LI Ye, JIANG Zhaoxiu, WANG Xiaodong, REN Wenke, GAO Guangfa. Penetration Behavior of 12.7 mm Projectile into Semi Infinite 45 Steel[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055104. doi: 10.11858/gywlxb.20210703

12.7 mm穿燃弹对半无限厚45钢的侵彻行为

doi: 10.11858/gywlxb.20210703
基金项目: 国家自然科学基金(11772160,11472008,11802001);爆炸科学与技术国家重点实验室开放课题(KFJJ18-01M);“十三五”装备预研领域基金(KFJJ13-9M)
详细信息
    作者简介:

    马铭辉(1996-),男,硕士研究生,主要从事冲击载荷下金属的动态响应研究.E-mail:maminghui@njust.edu.cn

    通讯作者:

    高光发(1980-),男,博士,教授,主要从事爆炸与冲击动力学、兵器科学与技术研究.E-mail:gfgao@ustc.edu.cn

  • 中图分类号: O385

Penetration Behavior of 12.7 mm Projectile into Semi Infinite 45 Steel

  • 摘要: 针对刚性卵形短杆弹对半无限厚钢靶的侵彻行为,利用12.7 mm弹道枪进行不同着靶速度下12.7 mm穿燃弹正侵彻45钢的弹道试验,并结合数值模拟对侵彻过程中的弹丸侵彻行为进行分析。结果表明:12.7 mm穿燃弹对45钢的临界开坑速度为75 m/s,在弹速范围内弹芯表现出刚性侵彻行为,不同着靶速度下弹芯的侵彻阻力上升趋势基本一致,当着靶速度大于400 m/s时,在开坑结束后会出现常阻力阶段,直至侵彻结束。同时,制式弹对45钢的侵彻深度与着靶动能呈线性正比关系,通过拟合得到了无量纲侵彻深度与无量纲动能的关系式。

     

  • 图  弹道装置示意图和实物

    Figure  1.  Schematic diagram of ballistic device and material object

    图  着靶速度和着靶动能与最终侵彻深度的关系

    Figure  2.  Relationships between impact velocity,kinetic energy and final penetration depth

    图  807.1 m/s着靶速度下的弹芯、弹坑和弹靶耦合形态

    Figure  3.  Projectile core, crater and projectile-target coupling at the impact velocity of 807.1 m/s

    图  原始弹芯和不同速度侵彻45钢靶后的弹芯头部

    Figure  4.  Original core and core heads after penetrating 45 steel target at different velocities

    图  12.7 mm制式弹侵彻45钢靶的几何模型

    Figure  5.  Geometric model of 12.7 mm standard projectile penetrating a 45 steel target

    图  弹芯材料的准静态压缩真应力-应变曲线

    Figure  6.  Quasi-static compressive true stress-strain curves of core material

    图  侵彻后的被甲

    Figure  7.  Tested armor after penetration

    图  数值模拟与试验结果对比

    Figure  8.  Comparison of numerical simulation and experimental results

    图  最终侵彻深度与着靶速度及着靶动能的关系

    Figure  9.  Final penetration depth versus impact velocity and kinetic energy

    图  10  开坑前弹芯动能密度损失与着靶速度的关系

    Figure  10.  Relationship between kinetic energy loss of core and impact velocity before pit opening

    图  11  不同着靶速度下的弹芯阻力与弹芯位移的关系

    Figure  11.  Relationship between core resistance and core displacement at different impact velocities

    图  12  弹芯的受力情况

    Figure  12.  Stress condition of bullet core

    图  13  无量纲侵彻深度与无量纲动能的关系

    Figure  13.  Relationship between dimensionless penetration depth and dimensionless kinetic energy

    表  1  原始弹芯和侵彻后弹芯的质量和尺寸

    Table  1.   Mass and dimension of original and tested cores

    No.Velocity/(m·s−1Mass/gLength/mmDiameter/mmMass loss rate/%
    1(Initial core)029.9751.3010.890
    2455.629.8951.3110.88−0.27
    3618.029.8651.2710.90−0.37
    4807.129.9151.3210.87−0.20
    下载: 导出CSV

    表  2  铅套及燃烧剂的Plastic-Kinematic材料模型参数

    Table  2.   Plastic-Kinetic material model parameters of lead bushing and fuel

    Material$\,\rho $/(g·cm–3)E/GPa$\nu $${\sigma { _\text{y} } }$/MPaEt/GPa
    Lead bushing11.30170.4215.57
    Fuel 1.80170.4215.57
    下载: 导出CSV

    表  3  45钢和弹丸被甲的J-C材料模型参数

    Table  3.   Parameters of J-C material model for 45 steel and projectile armor

    Material$\,\rho $/(g·cm–3)E/GPa$\nu $A/MPaB/MPa$C$n
    45 Steel7.852100.234503200.0140.28
    Projectile armor[18]7.921090.223002750.0220.15
    下载: 导出CSV
  • [1] CORRAN R S J, SHADBOLT P J, RUIZ C. Impact loading of plates — an experimental investigation [J]. International Journal of Impact Engineering, 1983, 1(1): 3–22. doi: 10.1016/0734-743X(83)90010-6
    [2] AWERBUCH J, BODNER S R. Experimental investigation of normal perforation of projectiles in metallic plates [J]. International Journal of Solids and Structures, 1974, 10(6): 685–699. doi: 10.1016/0020-7683(74)90051-1
    [3] HANCHAK F. Perforation experiments on HY-100 steel plates with 4340 Rc 38 and maraging T-250 steel rod projectiles [J]. International Journal of Impact Engineering, 1999, 22(9). doi: 10.1016/S0734-743X(99)00015-9
    [4] PIEKUTOWSKI A J, FORRESTAL M J, POORMON K L, et al. Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts [J]. International Journal of Impact Engineering, 1996, 18(7/8): 877–887. doi: 10.1016/S0734-743X(96)00011-5
    [5] LISS J, GOLDSMITH W. Plate perforation phenomena due to normal impact by blunt cylinders [J]. International Journal of Impact Engineering, 1984, 2(1): 37–64. doi: 10.1016/0734-743X(84)90014-9
    [6] GOLDSMITH W, FINNEGAN S A. Penetration and perforation processes in metal targets at and above ballistic velocities [J]. International Journal of Mechanical Sciences, 1971, 13(10): 843–866. doi: 10.1016/0020-7403(71)90111-1
    [7] RYAN S, LI H, EDGERTON M, et al. The ballistic performance of an ultra-high hardness armour steel: an experimental investigation [J]. International Journal of Impact Engineering, 2016, 94: 60–73. doi: 10.1016/j.ijimpeng.2016.03.011.
    [8] WOODWARD R L, DE MORTON M E. Penetration of targets by flat-ended projectiles [J]. International Journal of Mechanical Sciences, 1976, 18(3): 119–127. doi: 10.1016/0020-7403(76)90061-8
    [9] FORRESTAL M J, LUK V K, ROSENBERG Z, et al. Penetration of 7075-T651 aluminum targets with ogival-nose rods [J]. International Journal of Solids and Structures, 1992, 29(14/15): 1729–1736. doi: 10.1016/0020-7683(92)90166-Q
    [10] FORRESTAL M J, WARREN T L. Penetration equations for ogive-nose rods into aluminum targets [J]. International Journal of Impact Engineering, 2008, 35(8): 727–730. doi: 10.1016/j.ijimpeng.2007.11.002
    [11] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. doi: 10.1016/S0734-743X(02)00005-2
    [12] ROSENBERG Z, DEKEL E. The penetration of rigid long rods-revisited [J]. International Journal of Impact Engineering, 2009, 36(4): 551–564. doi: 10.1016/J.IJIMPENG.2008.06.001
    [13] KILIÇ N, BEDIR S, ERDIK A, et al. Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile [J]. Materials & Design, 2014, 63: 427–438. doi: 10.1016/J.MATDES.2014.06.030
    [14] KILIÇ N, EKICI B. Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition [J]. Materials & Design, 2013, 44: 35–48. doi: 10.1016/J.MATDES.2012.07.045
    [15] MISHRA B, RAMAKRISHNA B, JENA P K, et al. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact [J]. Materials & Design, 2013, 43: 17–24. doi: 10.1016/J.MATDES.2012.06.037
    [16] RAHMAN N A, ABDULLAH S, ZAMRI W F H, et al. Ballistic limit of high-strength steel and Al7075-T6 multi-layered plates under 7.62 mm armour piercing projectile impact [J]. Latin American Journal of Solids and Structures, 2016, 13(9): 1658–1676. doi: 10.1590/1679-78252657
    [17] 包阔,张先锋,谈梦婷,等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 57–68.

    BAO K, ZHANG X F, TAN M T, et al. Experimental and numerical simulation study of bullet impact on boron carbide ceramic composite target [J]. Explosion and impact, 2019, 39(12): 57–68.
    [18] 侯二永. 陶瓷间隙靶抗12.7 mm穿甲燃烧弹机理及性能研究[D]. 长沙: 国防科技大学, 2008.

    HOU E Y. Investigation of mechanism and performance of spaced ceramic target under impact of 12.7 mm armor piercing projectile [D]. Changsha: National University of Defense Technology, 2008.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  769
  • HTML全文浏览量:  380
  • PDF下载量:  55
出版历程
  • 收稿日期:  2021-01-07
  • 修回日期:  2021-01-29

目录

    /

    返回文章
    返回