3D打印梯度Gyroid结构的动态冲击响应

厉雪 肖李军 宋卫东

厉雪, 肖李军, 宋卫东. 3D打印梯度Gyroid结构的动态冲击响应[J]. 高压物理学报, 2021, 35(3): 034201. doi: 10.11858/gywlxb.20210701
引用本文: 厉雪, 肖李军, 宋卫东. 3D打印梯度Gyroid结构的动态冲击响应[J]. 高压物理学报, 2021, 35(3): 034201. doi: 10.11858/gywlxb.20210701
LI Xue, XIAO Lijun, SONG Weidong. Dynamic Behavior of 3D Printed Graded Gyroid Structures under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034201. doi: 10.11858/gywlxb.20210701
Citation: LI Xue, XIAO Lijun, SONG Weidong. Dynamic Behavior of 3D Printed Graded Gyroid Structures under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034201. doi: 10.11858/gywlxb.20210701

3D打印梯度Gyroid结构的动态冲击响应

doi: 10.11858/gywlxb.20210701
基金项目: 国家自然科学基金(11972092,12002049)
详细信息
    作者简介:

    厉 雪(1996-),女,硕士研究生,主要从事材料与结构的冲击动力学研究. E-mail:15152103981@163.com

    通讯作者:

    宋卫东(1975-),男,博士,教授,主要从事材料与结构的冲击动力学研究. E-mail:swdgh@bit.edu.cn

  • 中图分类号: O347.1

Dynamic Behavior of 3D Printed Graded Gyroid Structures under Impact Loading

  • 摘要: 利用ANSYS/LS-DYNA对均匀及梯度Gyroid结构进行准静态与动态压缩数值模拟,分析其应力分布、变形模式、承载能力以及吸能特性。对3D打印的316L不锈钢试样实施了单轴拉伸实验,获取了相应的材料参数,建立了Gyroid结构有限元模型,进而对其动态力学响应进行了数值仿真。结果表明:均匀结构呈现出较均匀的变形模式,梯度结构为低密度端向高密度端传播的逐层变形模式;两种结构均呈现明显的应变率敏感性,且负梯度结构的应变率敏感性最明显;在相同的加载速度下,负梯度结构的吸能效率最高,且具有最低的支撑端应力,是最佳的防护结构。研究结果可为冲击载荷下防护结构的设计选型提供参考。

     

  • 图  t与Gyroid结构相对密度的关系

    Figure  1.  Relationship of t and relative density of the Gyroid structures

    图  均匀及梯度Gyroid结构

    Figure  2.  Uniform and graded Gyroid structures

    图  SLM打印的316L不锈钢试样的工程应力-应变曲线

    Figure  3.  Engineering stress-strain curve of SLM printed 316L stainless steel specimens

    图  SLM打印的均匀TPMS结构冲击实验与数值模拟对比

    Figure  4.  Comparison of the experiment and numerical simulation of the SLM printed TPMS structures under impact loading

    图  均匀和梯度Gyroid结构在不同加载速度下的冲击端应力-应变曲线

    Figure  5.  Impact end stress-strain curves of the uniform and graded Gyroid structures under different loading velocities

    图  均匀结构(a)、正梯度结构(b)、负梯度结构(c)的准静态能量吸收效率曲线以及不同加载速度下各结构的密实应变(d)

    Figure  6.  Efficient energy curves of uniform structures (a), positive gradient structures (b) and negative gradient structures (c) under quasi-static loading, and the densification strain of different structures under different loading velocities (d)

    图  不同结构冲击端和支撑端的屈服应力对比

    Figure  7.  Stress comparison between the impact end and support end of different structures

    图  均匀和梯度Gyroid结构在30 m/s加载速度下的变形模式:(a)均匀结构,(b)正梯度结构,(c)负梯度结构

    Figure  8.  Deformation evolution of the uniform and graded Gyroid structures under v = 30 m/s: (a) uniform structures, (b) positive gradient structures, (c) negative gradient structures

    图  冲击波模式下均匀结构(a)和负梯度结构(b)的应力-应变曲线

    Figure  9.  Stress-strain curves of the uniform (a) and negative gradient (b) structures under shock wave

    图  10  冲击波模式下均匀结构(a)和负梯度结构(b)的变形模式

    Figure  10.  Deformation evolution of the uniform (a) and negative gradient (b) structures under shock wave modes

    图  11  不同加载速度下各结构的比吸能对比

    Figure  11.  Comparison of specific energy absorption between different structures under different loading velocities

    表  1  不同加载条件下各结构冲击端屈服应力$ {\sigma }_{\mathrm{y}} $、平台应力$ {\sigma }_{\mathrm{p}} $和应力放大因子${\sigma _{{\rm{DIF}}}}$

    Table  1.   Impact end yield stress $ {\sigma }_{\mathrm{y}} $, plateau stress $ {\sigma }_{\mathrm{p}} $, and stress increased factors ${\sigma _{{\rm{DIF}}}}$ of different structures under different loading velocities

    Structuresv/(m·s−1)$\sigma{\rm{_y}} $/MPa$\sigma{\rm{_p}}$/MPa$\sigma{\rm{_{DIF}}}$
    Uniform structures126.8039.861.00
    1050.2061.561.87
    3074.0066.912.76
    5096.6470.023.61
    Positive gradient structures114.8144.871.00
    1021.6661.541.46
    3030.6077.042.07
    5068.6878.704.64
    Negative gradient structures115.6940.861.00
    1048.5375.243.09
    3070.6176.764.50
    50139.6881.148.90
    下载: 导出CSV
  • [1] MONTAZERIAN H, DAVOODI E, ASADI-EYDIVAND M, et al. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties [J]. Materials & Design, 2017, 126: 98–114. doi: 10.1016/j.matdes.2017.04.009
    [2] SHEN M H, QIN W, XING B H, et al. Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures [J]. Journal of the European Ceramic Society, 2021, 41(2): 1481–1489. doi: 10.1016/j.jeurceramsoc.2020.09.062
    [3] Al-KETAN O, ROWSHAN R, AL-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J]. Additive Manufacturing, 2018, 19: 167–183. doi: 10.1016/j.addma.2017.12.006
    [4] MASKERY I, ABOULKHAIR N T, AREMU A O, et al. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices [J]. Additive Manufacturing, 2017, 16: 24–29. doi: 10.1016/j.addma.2017.04.003
    [5] BONATTI C, MOHR D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments [J]. Journal of the Mechanics and Physics of Solids, 2019, 122: 1–26. doi: 10.1016/j.jmps.2018.08.022
    [6] CHEN Z Y, XIE Y M, WU X, et al. On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties [J]. Materials & Design, 2019, 183: 108109. doi: 10.1016/j.matdes.2019.108109
    [7] MASKERY I, ASHCROFT I A. The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering [J]. Additive Manufacturing, 2020, 36: 101548. doi: 10.1016/j.addma.2020.101548
    [8] YÁNEZ A, CUADRADO A, MARTEL O, et al. Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction [J]. Materials & Design, 2018, 140: 21–29. doi: 10.1016/j.matdes.2017.11.050
    [9] HARUN W S W, KAMARIAH M S I N, MUHAMAD N, et al. A review of powder additive manufacturing processes for metallic biomaterials [J]. Powder Technology, 2018, 327: 128–151. doi: 10.1016/j.powtec.2017.12.058
    [10] BAI L, GONG C, CHEN X H, et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations [J]. International Journal of Mechanical Sciences, 2020, 182: 105735. doi: 10.1016/j.ijmecsci.2020.105735
    [11] NOVAK N, KRSTULOVIĆ-OPARA L, REN Z R, et al. Compression and shear behaviour of graded chiral auxetic structures [J]. Mechanics of Materials, 2020, 148: 103524. doi: 10.1016/j.mechmat.2020.103524
    [12] XIAO L J, SONG W D, XU X. Experimental study on the collapse behavior of graded Ti-6Al-4V micro-lattice structures printed by selective laser melting under high speed impact [J]. Thin-Walled Structures, 2020, 155: 106970. doi: 10.1016/j.tws.2020.106970
    [13] 刘宇, 郝琪, 田钰楠, 等. 负泊松比梯度蜂窝结构研究 [J]. 湖北汽车工业学院学报, 2020, 34(3): 64–68, 74. doi: 10.3969/j.issn.1008-5483.2020.03.013

    LIU Y, HAO Q, TIAN Y N, et al. Study on structure of negative poisson’s ratio gradient honeycomb [J]. Journal of Hubei University of Automotive Technology, 2020, 34(3): 64–68, 74. doi: 10.3969/j.issn.1008-5483.2020.03.013
    [14] 张权, 高松林, 杜志鹏, 等. 星形梯度负泊松比蜂窝结构面内冲击动态响应 [J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(5): 886–891. doi: 10.3963/j.issn.2095-3844.2020.05.023

    ZHANG Q, GAO S L, DU Z P, et al. In-plane impact dynamic response of star-shaped gradient negative poisson's ratio honeycomb structure [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(5): 886–891. doi: 10.3963/j.issn.2095-3844.2020.05.023
    [15] XIAO L J, SONG W D. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments [J]. International Journal of Impact Engineering, 2018, 111: 255–272. doi: 10.1016/j.ijimpeng.2017.09.018
    [16] ZHAO M, ZHANG D Z, LIU F, et al. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces [J]. International Journal of Mechanical Sciences, 2020, 167: 105262. doi: 10.1016/j.ijmecsci.2019.105262
    [17] MASKERY I, STURM L, AREMU A O, et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing [J]. Polymer, 2018, 152: 62–71. doi: 10.1016/j.polymer.2017.11.049
    [18] ZHANG L, FEIH S, DAYNES S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading [J]. Additive Manufacturing, 2018, 23: 505–515. doi: 10.1016/j.addma.2018.08.007
    [19] MCKOWN S, SHEN Y, BROOKES W K, et al. The quasi-static and blast loading response of lattice structures [J]. International Journal of Impact Engineering, 2008, 35(8): 795–810. doi: 10.1016/j.ijimpeng.2007.10.005
    [20] 冯根柱, 于博丽, 李世强, 等. 多层级夹芯结构的变形与能量吸收 [J]. 高压物理学报, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707

    FENG G Z, YU B L, LI S Q, et al. Deformation and energy absorption of multi-hierarchical sandwich structures [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707
    [21] XIAO L J, LI S, SONG W D, et al. Process-induced geometric defect sensitivity of Ti-6Al-4V lattice structures with different mesoscopic topologies fabricated by electron beam melting [J]. Materials Science and Engineering: A, 2020, 778: 139092. doi: 10.1016/j.msea.2020.139092
    [22] ZHENG Z J, LIU Y D, YU J L, et al. Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes [J]. International Journal of Impact Engineering, 2012, 42: 66–79. doi: 10.1016/j.ijimpeng.2011.09.009
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  4193
  • HTML全文浏览量:  1874
  • PDF下载量:  71
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-01-19

目录

    /

    返回文章
    返回