Dynamic Behavior of 3D Printed Graded Gyroid Structures under Impact Loading
-
摘要: 利用ANSYS/LS-DYNA对均匀及梯度Gyroid结构进行准静态与动态压缩数值模拟,分析其应力分布、变形模式、承载能力以及吸能特性。对3D打印的316L不锈钢试样实施了单轴拉伸实验,获取了相应的材料参数,建立了Gyroid结构有限元模型,进而对其动态力学响应进行了数值仿真。结果表明:均匀结构呈现出较均匀的变形模式,梯度结构为低密度端向高密度端传播的逐层变形模式;两种结构均呈现明显的应变率敏感性,且负梯度结构的应变率敏感性最明显;在相同的加载速度下,负梯度结构的吸能效率最高,且具有最低的支撑端应力,是最佳的防护结构。研究结果可为冲击载荷下防护结构的设计选型提供参考。Abstract: The quasi-static and dynamic compression properties of uniform and graded Gyroid structures were studied by using the commercial software ANSYS/LS-DYNA. The stress distributions, deformation mode, loading bearing and energy absorption abilities were analyzed accordingly. Some numerical material parameters of SLM (selective laser melting) printed 316L stainless steel was obtained by tensile tests. Finite element models of Gyroid structure were established, and the dynamic mechanical response was numerically simulated. The results indicate that the uniform structure performs relatively uniform deformation patterns, while the graded specimen shows deformation propagation from the low density end to the high density end. All the studied structures show obvious strain rate sensitivities, which is the most apparent in the negative structures. Moreover, the negative gradient structure absorbs the most energy and possesses the smallest supporting stresses compared with the other structures under the similar loading velocity, which denotes that the negative arrangement is the perfect protect structures. The results can provide guidance for the design of the protect structures under impact loading.
-
图 6 均匀结构(a)、正梯度结构(b)、负梯度结构(c)的准静态能量吸收效率曲线以及不同加载速度下各结构的密实应变(d)
Figure 6. Efficient energy curves of uniform structures (a), positive gradient structures (b) and negative gradient structures (c) under quasi-static loading, and the densification strain of different structures under different loading velocities (d)
表 1 不同加载条件下各结构冲击端屈服应力
$ {\sigma }_{\mathrm{y}} $ 、平台应力$ {\sigma }_{\mathrm{p}} $ 和应力放大因子${\sigma _{{\rm{DIF}}}}$ Table 1. Impact end yield stress
$ {\sigma }_{\mathrm{y}} $ , plateau stress$ {\sigma }_{\mathrm{p}} $ , and stress increased factors${\sigma _{{\rm{DIF}}}}$ of different structures under different loading velocitiesStructures v/(m·s−1) $\sigma{\rm{_y}} $/MPa $\sigma{\rm{_p}}$/MPa $\sigma{\rm{_{DIF}}}$ Uniform structures 1 26.80 39.86 1.00 10 50.20 61.56 1.87 30 74.00 66.91 2.76 50 96.64 70.02 3.61 Positive gradient structures 1 14.81 44.87 1.00 10 21.66 61.54 1.46 30 30.60 77.04 2.07 50 68.68 78.70 4.64 Negative gradient structures 1 15.69 40.86 1.00 10 48.53 75.24 3.09 30 70.61 76.76 4.50 50 139.68 81.14 8.90 -
[1] MONTAZERIAN H, DAVOODI E, ASADI-EYDIVAND M, et al. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties [J]. Materials & Design, 2017, 126: 98–114. doi: 10.1016/j.matdes.2017.04.009 [2] SHEN M H, QIN W, XING B H, et al. Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures [J]. Journal of the European Ceramic Society, 2021, 41(2): 1481–1489. doi: 10.1016/j.jeurceramsoc.2020.09.062 [3] Al-KETAN O, ROWSHAN R, AL-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J]. Additive Manufacturing, 2018, 19: 167–183. doi: 10.1016/j.addma.2017.12.006 [4] MASKERY I, ABOULKHAIR N T, AREMU A O, et al. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices [J]. Additive Manufacturing, 2017, 16: 24–29. doi: 10.1016/j.addma.2017.04.003 [5] BONATTI C, MOHR D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments [J]. Journal of the Mechanics and Physics of Solids, 2019, 122: 1–26. doi: 10.1016/j.jmps.2018.08.022 [6] CHEN Z Y, XIE Y M, WU X, et al. On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties [J]. Materials & Design, 2019, 183: 108109. doi: 10.1016/j.matdes.2019.108109 [7] MASKERY I, ASHCROFT I A. The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering [J]. Additive Manufacturing, 2020, 36: 101548. doi: 10.1016/j.addma.2020.101548 [8] YÁNEZ A, CUADRADO A, MARTEL O, et al. Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction [J]. Materials & Design, 2018, 140: 21–29. doi: 10.1016/j.matdes.2017.11.050 [9] HARUN W S W, KAMARIAH M S I N, MUHAMAD N, et al. A review of powder additive manufacturing processes for metallic biomaterials [J]. Powder Technology, 2018, 327: 128–151. doi: 10.1016/j.powtec.2017.12.058 [10] BAI L, GONG C, CHEN X H, et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations [J]. International Journal of Mechanical Sciences, 2020, 182: 105735. doi: 10.1016/j.ijmecsci.2020.105735 [11] NOVAK N, KRSTULOVIĆ-OPARA L, REN Z R, et al. Compression and shear behaviour of graded chiral auxetic structures [J]. Mechanics of Materials, 2020, 148: 103524. doi: 10.1016/j.mechmat.2020.103524 [12] XIAO L J, SONG W D, XU X. Experimental study on the collapse behavior of graded Ti-6Al-4V micro-lattice structures printed by selective laser melting under high speed impact [J]. Thin-Walled Structures, 2020, 155: 106970. doi: 10.1016/j.tws.2020.106970 [13] 刘宇, 郝琪, 田钰楠, 等. 负泊松比梯度蜂窝结构研究 [J]. 湖北汽车工业学院学报, 2020, 34(3): 64–68, 74. doi: 10.3969/j.issn.1008-5483.2020.03.013LIU Y, HAO Q, TIAN Y N, et al. Study on structure of negative poisson’s ratio gradient honeycomb [J]. Journal of Hubei University of Automotive Technology, 2020, 34(3): 64–68, 74. doi: 10.3969/j.issn.1008-5483.2020.03.013 [14] 张权, 高松林, 杜志鹏, 等. 星形梯度负泊松比蜂窝结构面内冲击动态响应 [J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(5): 886–891. doi: 10.3963/j.issn.2095-3844.2020.05.023ZHANG Q, GAO S L, DU Z P, et al. In-plane impact dynamic response of star-shaped gradient negative poisson's ratio honeycomb structure [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(5): 886–891. doi: 10.3963/j.issn.2095-3844.2020.05.023 [15] XIAO L J, SONG W D. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments [J]. International Journal of Impact Engineering, 2018, 111: 255–272. doi: 10.1016/j.ijimpeng.2017.09.018 [16] ZHAO M, ZHANG D Z, LIU F, et al. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces [J]. International Journal of Mechanical Sciences, 2020, 167: 105262. doi: 10.1016/j.ijmecsci.2019.105262 [17] MASKERY I, STURM L, AREMU A O, et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing [J]. Polymer, 2018, 152: 62–71. doi: 10.1016/j.polymer.2017.11.049 [18] ZHANG L, FEIH S, DAYNES S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading [J]. Additive Manufacturing, 2018, 23: 505–515. doi: 10.1016/j.addma.2018.08.007 [19] MCKOWN S, SHEN Y, BROOKES W K, et al. The quasi-static and blast loading response of lattice structures [J]. International Journal of Impact Engineering, 2008, 35(8): 795–810. doi: 10.1016/j.ijimpeng.2007.10.005 [20] 冯根柱, 于博丽, 李世强, 等. 多层级夹芯结构的变形与能量吸收 [J]. 高压物理学报, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707FENG G Z, YU B L, LI S Q, et al. Deformation and energy absorption of multi-hierarchical sandwich structures [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707 [21] XIAO L J, LI S, SONG W D, et al. Process-induced geometric defect sensitivity of Ti-6Al-4V lattice structures with different mesoscopic topologies fabricated by electron beam melting [J]. Materials Science and Engineering: A, 2020, 778: 139092. doi: 10.1016/j.msea.2020.139092 [22] ZHENG Z J, LIU Y D, YU J L, et al. Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes [J]. International Journal of Impact Engineering, 2012, 42: 66–79. doi: 10.1016/j.ijimpeng.2011.09.009