基于Lagrange及SPH算法的花岗岩侵彻数值模拟

靳绍虎 刘科伟 黄进 杨家彩 靳少博

靳绍虎, 刘科伟, 黄进, 杨家彩, 靳少博. 基于Lagrange及SPH算法的花岗岩侵彻数值模拟[J]. 高压物理学报, 2021, 35(5): 055103. doi: 10.11858/gywlxb.20200665
引用本文: 靳绍虎, 刘科伟, 黄进, 杨家彩, 靳少博. 基于Lagrange及SPH算法的花岗岩侵彻数值模拟[J]. 高压物理学报, 2021, 35(5): 055103. doi: 10.11858/gywlxb.20200665
JIN Shaohu, LIU Kewei, HUANG Jin, YANG Jiacai, JIN Shaobo. Numerical Simulation of Granite Penetration Based on Lagrange and SPH Algorithm[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055103. doi: 10.11858/gywlxb.20200665
Citation: JIN Shaohu, LIU Kewei, HUANG Jin, YANG Jiacai, JIN Shaobo. Numerical Simulation of Granite Penetration Based on Lagrange and SPH Algorithm[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055103. doi: 10.11858/gywlxb.20200665

基于Lagrange及SPH算法的花岗岩侵彻数值模拟

doi: 10.11858/gywlxb.20200665
基金项目: 湖南省自然科学基金(2018JJ3656)
详细信息
    作者简介:

    靳绍虎(1993-),男,硕士,主要从事侵彻及爆炸动力学研究. E-mail:396774099@qq.com

    通讯作者:

    刘科伟(1982-),男,博士,副教授,主要从事爆破技术和岩土工程等研究.E-mail:kewei_liu@126.com

  • 中图分类号: O347

Numerical Simulation of Granite Penetration Based on Lagrange and SPH Algorithm

  • 摘要: 为研究不同算法对弹体侵彻花岗岩模拟的影响,基于仿真分析软件LS-DYNA中的Lagrange算法及SPH(Smooth particle hydrodynamics)算法,采用Lagrange、SPH-Lagrange耦合及SPH算法分别对弹体侵彻、贯穿花岗岩靶体进行数值模拟,并从计算效率、侵彻深度、速度衰减、靶体损伤、Mises应力分布多方面对比模拟结果,分析3种算法用于研究岩石侵彻问题的优势和不足。研究表明:Lagrange算法的计算效率最高,计算精度高,但存在单元畸变、无撞击溅射、无后坑区等问题;SPH算法的计算效率最低,但模拟效果良好;SPH-Lagrange耦合算法兼具二者优势,但会导致应力滞后和应力波不稳定衰减。在大型模拟中应优先选用Lagrange算法和SPH-Lagrange耦合算法。

     

  • 图  实验试件

    Figure  1.  Experiment sample

    图  计算模型

    Figure  2.  Model of projectile and granite target

    图  模型描述

    Figure  3.  Model description

    图  不同网格尺寸下侵深-时间关系曲线

    Figure  4.  Time history of penetration depth with different mesh sizes

    图  不同侵彻速度下侵深-时间关系曲线

    Figure  5.  Time history of penetration depth with different velocities

    图  侵彻速度为1426 m/s时靶体的损伤

    Figure  6.  Target damage at an impact velocity of 1426 m/s

    图  靶体损伤云图

    Figure  7.  Target damage of 800 mm model

    图  质点峰值振动速度

    Figure  8.  PPV of target points

    图  0.04 ms时Mises应力分布

    Figure  9.  Von Mises stress at 0.04 ms

    图  10  侵深-时间和速度-时间关系曲线

    Figure  10.  Time history of penetration depth and velocity

    图  11  靶体损伤云图

    Figure  11.  Target damage of 100 mm model

    图  12  0.04 ms时Mises应力分布

    Figure  12.  Von Mises stress at 0.04 ms

    图  13  采用不同算法得到的侵彻速度-时间关系曲线

    Figure  13.  Time history of velocity with different algorithm

    表  1  侵彻实验数据

    Table  1.   Test results of projectile penetration

    No.Launch velocity/(m·s−1)Depth of penetration/mmMass of the residual projectile/g
    11196118.8031.65
    21426146.0231.42
    31430155.8031.32
    41600163.9030.83
    下载: 导出CSV

    表  2  子弹材料参数

    Table  2.   Properties of test projectile

    ρp/(kg·m−3)Poisson’s ratio
    Et/GPaCFailure strain
    78500.36.10.2191.5
    E/GPaf/GPaβPVP
    2111.313.30
    下载: 导出CSV

    表  3  RHT模型参数

    Table  3.   Parameters of RHT material model

    Mass density/(kg·m−3)Elastic shear modulus/GPaEroding plastic strainParameter for polynomial
    EOS B0
    2670.021.02.01.68
    Parameter for polynomial
    EOS B1
    Parameter for polynomial
    EOS T1/GPa
    Failure surface
    parameter A
    Failure surface
    parameter N
    1.6847.11.600.56
    Compressive strength/MPaRelative shear strengthRelative tensile strengthLode angle dependence
    factor Q0
    150.00.380.100.64
    Lode angle dependence
    factor B
    Parameter for polynomial
    EOS T2/GPa
    Reference compressive
    strain rate/s–1
    Reference tensile
    strain rate/s–1
    0.0503.0×10−53.0×10−6
    Break compressive
    strain rate/s–1
    Break tensile
    strain rate/s–1
    Compressive strain rate
    dependence exponent
    Tensile strain rate
    dependence exponent
    3.0×10253.0×10250.00850.012
    Pressure influence on
    plastic flow in tension
    Compressive yield
    surface parameter
    Tensile yield surface
    parameter
    Shear modulus
    reduction factor
    0.0010.400.700.48
    Damage parameter D1Damage parameter D2Minimum damaged
    residual strain
    Residual surface
    parameter AF
    0.0421.00.0121.60
    Residual surface
    parameter NF
    Grüneisen parameter γHugoniot polynomial
    coefficient A1/GPa
    Hugoniot polynomial
    coefficient A2/GPa
    0.60047.1079.13
    Hugoniot polynomial
    coefficient A3/GPa
    Crush pressure/MPaCompaction pressure/GPaPorosity exponent
    48.3650.06.04.0
    Initial porosity
    1.01
    下载: 导出CSV

    表  4  网格尺寸与侵彻深度

    Table  4.   Mesh size and penetration depth

    No.Mesh sizePenetration depth/mmNo.Mesh sizePenetration depth/mm
    11∶1 60.9841∶4 119.07
    21∶2 98.3751∶5 123.33
    31∶3 108.1561∶6 126.50
    下载: 导出CSV
  • [1] 沈俊, 徐翔云, 何翔, 等. 弹体高速侵彻岩石效应试验研究 [J]. 岩石力学与工程学报, 2010, 29(Suppl 2): 4207–4212.

    SHEN J, XU X Y, HE X, et al. Experimental study of effect of rock targets penetrated by high-velocity projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl 2): 4207–4212.
    [2] FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845.
    [3] 张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618.

    ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618.
    [4] BERNARD R S. Empirical analysis of projectile penetration in rock: AD-A047989 [R]. Vicksburg, US: Soils and Pavements Laboratory, US Amry Engineer Waterways Experiment Station, 1977.
    [5] 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66.

    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66.
    [6] 王延斌, 张西前, 俞茂宏, 等. 长杆弹对岩石靶的侵彻分析 [J]. 岩石力学与工程学报, 2005, 24(8): 1301–1307.

    WANG Y B, ZHANG X Q, YU M H, et al. Penetration analysis of long rod projectiles on rock targets [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1301–1307.
    [7] YOUNG C W. Penetration equations: SAND97-2426 [R]. Albuquerque, NM: Sandia National Laboratories, 1997: 4–12.
    [8] 王明洋, 谭可可, 吴华杰, 等. 岩石中侵彻深度计算新原理与方法 [J]. 岩石力学与工程学报, 2009, 28(9): 1863–1869. doi: 10.3321/j.issn:1000-6915.2009.09.018

    WANG M Y, TAN K K, WU H J, et al. New method of calculation of projectile penetration into rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1863–1869. doi: 10.3321/j.issn:1000-6915.2009.09.018
    [9] 王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572.

    WANG M Y, QIU Y Y, LI J, et al. Theoretical and experimental study on rock penetration and ground impact effects of hypervelocity long rod projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572.
    [10] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. doi: 10.1016/j.ijimpeng.2003.09.047
    [11] THAM C Y. Numerical and empirical approach in predicting the penetration of a concrete target by an ogive-nosed projectile [J]. Finite Elements in Analysis and Design, 2006, 42(14/15): 1258–1268.
    [12] 强洪夫, 张国星, 王广, 等. SPH方法在宽速域岩石侵彻问题中的应用 [J]. 高压物理学报, 2019, 33(5): 055105.

    QIANG H F, ZHANG G X, WANG G, et al. Application of SPH method for problem of rock penetration within the wide-ranged velocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055105.
    [13] 王凤英, 刘迎彬, 刘天生, 等. 强冲击载荷下氧化铝陶瓷靶破坏过程的SPH数值模拟 [J]. 高压物理学报, 2012, 26(4): 415–420.

    WANG F Y, LIU Y B, LIU T S, et al. Numerical simulation of the destructive process of shock-loaded alumina ceramics using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 415–420.
    [14] 孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 25–33.

    KONG X Z, FANG Q. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the smooth particle hydrodynamics method [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(2): 25–33.
    [15] 卞梁, 王肖钧, 章杰. SPH/FEM耦合算法在陶瓷复合靶抗侵彻数值模拟中的应用 [J]. 高压物理学报, 2010, 24(3): 161–167. doi: 10.3969/j.issn.1000-5773.2010.03.001

    BIAN L, WANG X J, ZHANG J. Numerical simulations of anti-penetration of confined ceramic targets by SPH/FEM coupling method [J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 161–167. doi: 10.3969/j.issn.1000-5773.2010.03.001
    [16] 傅学金, 强洪夫, 杨月诚. 固体介质中SPH方法的拉伸不稳定性问题研究进展 [J]. 力学进展, 2007, 37(3): 375–388.

    FU X J, QIANG H F, YANG Y C. Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics [J]. Advances in Mechanics, 2007, 37(3): 375–388.
    [17] 尹冠生, 高艳, 赵庭. 基于SPH算法的刚性弹丸侵彻的数值模拟 [J]. 长安大学学报(自然科学版), 2014, 34(3): 74–79.

    YIN G S, GAO Y, ZHAO T. Numerical simulation for penetration of rigid projectile based on SPH method [J]. Journal of Chang’an University (Natural Science Edition), 2014, 34(3): 74–79.
    [18] LI J, WANG M Y, CHENG Y H, et al. Analytical model of hypervelocity penetration into rock [J]. International Journal of Impact Engineering, 2018, 122: 384–394.
    [19] LS-DYNA. Keyword user’s manual. Version 971 [M]. Livermore, CA: Livermore Software Technology Corporation (LSTC), 2006: 1071–1078.
    [20] CHEN X G, LU F Y, ZHANG D. Penetration trajectory of concrete targets by ogived steel projectiles-experiments and simulations [J]. International Journal of Impact Engineering, 2018, 120: 202–213.
    [21] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C]//AIP Conference Proceedings. Colorado Springs, CO, USA, 1993.
    [22] 姜华, 王君杰. 弹体垂直侵彻钢筋混凝土数值模拟 [J]. 同济大学学报(自然科学版), 2010, 38(4): 557–563.

    JIANG H, WANG J J. Numerical simulation of projectile perforation reinforced concrete perpendicularly [J]. Journal of Tongji University (Natural Science), 2010, 38(4): 557–563.
    [23] 李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学, 2016: 6–77.

    LI H C. Study on theory and main parameters determination of rock RHT model [D]. Beijing: China University of Mining and Technology, 2016: 6–77.
    [24] LIU K W, HAO H, LI X B. Numerical analysis of the stability of abandoned cavities in bench blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 92: 30–39.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1986
  • HTML全文浏览量:  1063
  • PDF下载量:  52
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-03-14

目录

    /

    返回文章
    返回