异构金属材料的冲击动力学行为研究进展

张子晗 马彦 袁福平

张子晗, 马彦, 袁福平. 异构金属材料的冲击动力学行为研究进展[J]. 高压物理学报, 2021, 35(4): 040105. doi: 10.11858/gywlxb.20200662
引用本文: 张子晗, 马彦, 袁福平. 异构金属材料的冲击动力学行为研究进展[J]. 高压物理学报, 2021, 35(4): 040105. doi: 10.11858/gywlxb.20200662
ZHANG Zihan, MA Yan, YUAN Fuping. A Review on the Impact Dynamic Behaviors of Metals with Heterogeneous Structures[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040105. doi: 10.11858/gywlxb.20200662
Citation: ZHANG Zihan, MA Yan, YUAN Fuping. A Review on the Impact Dynamic Behaviors of Metals with Heterogeneous Structures[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040105. doi: 10.11858/gywlxb.20200662

异构金属材料的冲击动力学行为研究进展

doi: 10.11858/gywlxb.20200662
基金项目: 科技部重点研发计划(2017YFB0202802);国家自然科学基金(11672313)
详细信息
    作者简介:

    张子晗(1996-),男,硕士研究生,主要从事金属结构材料的力学性能研究.E-mail:zhangzihan@imech.ac.cn

    通讯作者:

    马 彦(1992-),男,博士研究生,主要从事金属结构材料动态变形机理研究. E-mail:mayan@imech.ac.cn

  • 中图分类号: O347.3

A Review on the Impact Dynamic Behaviors of Metals with Heterogeneous Structures

  • 摘要: 高强度金属材料往往塑性/韧性较差,而异构金属的微结构设计能够使得金属在获得高强度的同时具有良好的塑性/韧性。因此,异构金属在准静态、动态载荷下的力学行为成为材料力学/冲击动力学的研究热点。综述了梯度结构、双相结构、多尺度晶粒结构等异构金属的动态力学性能及微结构机理方面的研究进展。相比于均匀材料,异构金属表现出更优越的动态剪切韧性和冲击韧性。由于异构材料微观结构的非均匀性,绝热剪切带的萌生与扩展往往不同于均匀材料。异构金属中的界面或软区能够有效抑制绝热剪切带的萌生及扩展,延缓材料失效。异构材料中,非均匀变形产生的额外加工硬化使得异构金属表现出优异的动态力学性能。

     

  • 图  剪切样品示意图

    Figure  1.  Schematic illustration of shear test specimens

    图  金属及合金的动态剪切性能[18]

    Figure  2.  Dynamic shear properties of metals and alloys[18]

    图  冲击力-位移曲线及金属材料冲击韧性[22-23]

    Figure  3.  Load-deflection curve and impact fracture toughness of metals and alloys[22-23]

    图  梯度结构TWIP钢中剪切带形成及扩展[13]

    Figure  4.  Initiation and propagation of ASB in GS TWIP steel[13]

    图  复合多层材料中剪切带的形成及扩展[31]

    Figure  5.  Initiation and propagation of ASB in CMS[31]

    图  双相钢Fe-5Mn-0.2C中绝热剪切带的演化规律[38]

    Figure  6.  Evolution of ASB in Fe-5Mn-0.2C dual-phase steel[38]

  • [1] DODD B, BAI Y L. Adiabatic shear localization [M]. 2nd ed. Amsterdam: Elsevier, 2012: 4–5.
    [2] YANG Y, LIAN X, WANG J. Effect of strain rate on self-organization of adiabatic shear bands in steel [J]. Materials Science and Technology, 2020, 36(5): 556–563. doi: 10.1080/02670836.2020.1717084
    [3] WALLEY S M. Shear localization: a historical overview [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2629–2654. doi: 10.1007/s11661-007-9271-x
    [4] YAN N, LI Z Z, XU Y B, et al. Shear localization in metallic materials at high strain rates [J]. Progress in Materials Science, 2020: 100755. doi: 10.1016/j.pmatsci.2020.100755
    [5] SUO T, LI Y L, XIE K, et al. Experimental investigation on strain rate sensitivity of ultra-fine grained copper at elevated temperatures [J]. Mechanics of Materials, 2011, 43(3): 111–118. doi: 10.1016/j.mechmat.2011.02.002
    [6] WEI Q. Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses [J]. Journal of Materials Science, 2007, 42(5): 1709–1727. doi: 10.1007/s10853-006-0700-9
    [7] ZHU Y, AMEYAMA K, ANDERSON P M, et al. Heterostructured materials: superior properties from hetero-zone interaction [J]. Materials Research Letters, 2021, 9(1): 1–31. doi: 10.1080/21663831.2020.1796836
    [8] WU X L, ZHU Y T. Heterogeneous materials: a new class of materials with unprecedented mechanical properties [J]. Materials Research Letters, 2017, 5(8): 527–532. doi: 10.1080/21663831.2017.1343208
    [9] MA E, ZHU T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Materials Today, 2017, 20(6): 323–331. doi: 10.1016/j.mattod.2017.02.003
    [10] XUE Q, GRAY G T, HENRIE B L, et al. Influence of shock prestraining on the formation of shear localization in 304 stainless steel [J]. Metallurgical and Materials Transactions A, 2005, 36A(6): 1471–1486.
    [11] GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. doi: 10.1103/PhysRevLett.122.015503
    [12] GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. doi: 10.1016/j.jmps.2019.103811
    [13] BIAN X D, YUAN F P, ZHU Y T, et al. Gradient structure produces superior dynamic shear properties [J]. Materials Research Letters, 2017, 5(7): 501–507. doi: 10.1080/21663831.2017.1334715
    [14] XING J X, YUAN F P, WU X L. Enhanced quasi-static and dynamic shear properties by heterogeneous gradient and lamella structures in 301 stainless steels [J]. Materials Science and Engineering: A, 2017, 680: 305–316. doi: 10.1016/j.msea.2016.10.111
    [15] 马彦, 袁福平, 武晓雷. 双相高强钢FeNiAlC的动态剪切行为及微结构机理 [J]. 爆炸与冲击, 2021, 41(1): 011404.

    MA Y, YUAN F P, WU X L. Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy [J]. Explosion and Shock Waves, 2021, 41(1): 011404.
    [16] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys [J]. Nature Reviews Materials, 2019, 4(8): 515–534. doi: 10.1038/s41578-019-0121-4
    [17] MA E, WU X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nature Communications, 2019, 10: 5623.
    [18] MA Y, YUAN F P, YANG M X, et al. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures [J]. Acta Materialia, 2018, 148: 407–418. doi: 10.1016/j.actamat.2018.02.016
    [19] RITCHIE R O. The conflicts between strength and toughness [J]. Nature Materials, 2011, 10(11): 817–822. doi: 10.1038/nmat3115
    [20] LIN Y, YU Q, PAN J, et al. On the impact toughness of gradient-structured metals [J]. Acta Materialia, 2020, 193: 125–137. doi: 10.1016/j.actamat.2020.04.027
    [21] CAVALIERE P. Crack tip plasticity in plastically graded Ni-W electrodeposited nanocrystalline alloys [J]. Computational Materials Science, 2008, 41(4): 440–449. doi: 10.1016/j.commatsci.2007.05.007
    [22] YANG M X, ZHOU L L, WANG C, et al. High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature [J]. Scripta Materialia, 2019, 172: 66–71. doi: 10.1016/j.scriptamat.2019.07.010
    [23] WU X L, YANG M X, JIANG P, et al. Deformation nanotwins suppress shear banding during impact test of CrCoNi medium-entropy alloy [J]. Scripta Materialia, 2020, 178: 452–456. doi: 10.1016/j.scriptamat.2019.12.017
    [24] YUAN F P, YAN D S, SUN J D, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Materials Research Letters, 2019, 7(1): 12–17. doi: 10.1080/21663831.2018.1546238
    [25] CAO R Q, YU Q, PAN J, et al. On the exceptional damage-tolerance of gradient metallic materials [J]. Materials Today, 2020, 32: 94–107. doi: 10.1016/j.mattod.2019.09.023
    [26] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
    [27] BATRA R C, KIM C H. Adiabatic shear banding in elastic-viscoplastic nonpolar and dipolar materials [J]. International Journal of Plasticity, 1990, 6(2): 127–141. doi: 10.1016/0749-6419(90)90018-A
    [28] ASHBY M. Designing architectured materials [J]. Scripta Materialia, 2013, 68(1): 4–7. doi: 10.1016/j.scriptamat.2012.04.033
    [29] DEMIR E, RAABE D, ZAAFARANI N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography [J]. Acta Materialia, 2009, 57(2): 559–569. doi: 10.1016/j.actamat.2008.09.039
    [30] KIM J G, BAEK S M, LEE H H, et al. Suppressed deformation instability in the twinning-induced plasticity steel-cored three-layer steel sheet [J]. Acta Materialia, 2018, 147: 304–312.
    [31] HE J Y, YUAN F P, YANG M X, et al. Superior mechanical properties and deformation mechanisms of heterogeneous laminates under dynamic shear loading [J]. Materials Science and Engineering: A, 2019, 756: 492–501. doi: 10.1016/j.msea.2019.04.082
    [32] LUO H W, SHI J, WANG C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Materialia, 2011, 59(10): 4002–4014. doi: 10.1016/j.actamat.2011.03.025
    [33] LEE S, ESTRIN Y, DE COOMAN B C. Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP steel [J]. Metallurgical and Materials Transactions A, 2014, 45(2): 717–730.
    [34] NIIKURA M, MORRIS J W. Thermal-processing of ferritic 5Mn steel for toughness at cryogenic temperatures [J]. Metallurgical and Materials Transactions A, 1980, 11(9): 1531–1540. doi: 10.1007/BF02654516
    [35] WU X L, YANG M X, YUAN F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Materialia, 2016, 112: 337–346. doi: 10.1016/j.actamat.2016.04.045
    [36] XUE Q, MEYERS M A, NESTERENKO V F. Self-organization of shear bands in stainless steel [J]. Materials Science and Engineering: A, 2004, 384(1/2): 35–46. doi: 10.1016/j.msea.2004.05.069
    [37] BRONKHORST C A, CERRETA E K, XUE Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel [J]. International Journal of Plasticity, 2006, 22(7): 1304–1335. doi: 10.1016/j.ijplas.2005.10.002
    [38] YUAN F P, BIAN X D, JIANG P, et al. Dynamic shear response and evolution mechanisms of adiabatic shear band in an ultrafine-grained austenite-ferrite duplex steel [J]. Mechanics of Materials, 2015, 89: 47–58. doi: 10.1016/j.mechmat.2015.06.004
    [39] REN Y, YU X, TAN C, et al. Dynamic mechanical properties and adiabatic shearing behavior of the shock prestrained Ti-6Al-4V alloy having bimodal microstructure [J]. Journal of Alloys and Compounds, 2019, 773: 1054–1063. doi: 10.1016/j.jallcom.2018.09.207
    [40] RECHT R F. Catastrophic thermoplastic shear [J]. Journal of Applied Mechanics, 1964, 31(2): 189–193. doi: 10.1115/1.3629585
    [41] CULVER R S. Thermal instability strain in dynamic plastic deformation: metallurgical effects at high strain rates [M]. Amsterdam: Springer, 1973: 519–530.
    [42] LONGO W P, REEDHILL R E. Work softening in polycrystalline metals [J]. Scripta Metallurgica, 1970, 4(10): 765–770. doi: 10.1016/0036-9748(70)90057-8
    [43] MEYERS M A. Work softening in shock-loaded nickel [J]. Metallurgical and Materials Transactions A, 1977, 8(10): 1581–1583. doi: 10.1007/BF02644862
    [44] BAI Y L. A criterion for thermo-plastic shear instability [M]. Berlin, Heidelberg: Springer, 1981.
    [45] COFFEY C S. The localization of energy and plastic-deformation in crystalline solids during shock or impact [J]. Journal of Applied Physics, 1991, 70(8): 4248–4254. doi: 10.1063/1.349151
    [46] ARMSTRONG R W, COFFEY C S, ELBAN W L. Adiabatic heating at a dislocation pile-up avalanche [J]. Acta Metallurgica, 1982, 30(12): 2111–2116. doi: 10.1016/0001-6160(82)90131-6
    [47] ARMSTRONG R W. Dislocation mechanics aspects of energetic material composites [J]. Reviews on Advanced Materials Science, 2009, 19(1/2): 13–40.
    [48] WU X L, ZHU Y T, LU K. Ductility and strain hardening in gradient and lamellar structured materials [J]. Scripta Materialia, 2020, 186: 321–325. doi: 10.1016/j.scriptamat.2020.05.025
    [49] ZHU Y T, WU X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Materials Research Letters, 2019, 7(10): 393–398. doi: 10.1080/21663831.2019.1616331
    [50] MA Y, YANG M X, YUAN F P, et al. A review on heterogeneous nanostructures: a strategy for superior mechanical properties in metals [J]. Metals, 2019, 9(5): 598.
    [51] CULVER R S, Thermal instability strain in dynamic plastic deformation [M]. Berlin, Heidelberg: Springer, 1973.
    [52] YANG Z L, YANG M X, MA Y, et al. Strain rate dependent shear localization and deformation mechanisms in the CrMnFeCoNi high-entropy alloy with various microstructures [J]. Materials Science and Engineering: A, 2020, 793: 139854. doi: 10.1016/j.msea.2020.139854
    [53] SALVADO F C, TEIXEIRA-DIAS F, WALLEY S M, et al. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals [J]. Progress in Materials Science, 2017, 88: 186–231.
    [54] ESKANDARI M, MOHTADI-BONAB M A, ZAREI-HANZAKI A, et al. High-resolution EBSD study of adiabatic shear band and neighboring grains after dynamic impact loading of Mn-steel used in vehicle structure [J]. Journal of Materials Engineering and Performance, 2016, 25(4): 1611–1620. doi: 10.1007/s11665-016-1923-9
    [55] HWANG S W, JI J N, PARK K-T. Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels [J]. Materials Science and Engineering: A, 2011, 528(24): 7267–7275. doi: 10.1016/j.msea.2011.06.020
    [56] YANG H, XU Y, SEKI Y, et al. Analysis and characterization by electron backscatter diffraction of microstructural evolution in the adiabatic shear bands in Fe-Cr-Ni alloys [J]. Journal of Materials Research, 2009, 24(8): 2617–2627. doi: 10.1557/jmr.2009.0322
    [57] YANG Y, JIANG L H, LUO S H, et al. Effect of strain on microstructure evolution of 1Cr18Ni9Ti stainless steel during adiabatic shearing [J]. Journal of Materials Engineering and Performance, 2016, 25(1): 29–37. doi: 10.1007/s11665-015-1776-7
    [58] MEYERS M A, XU Y B, XUE Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia, 2003, 51(5): 1307–1325. doi: 10.1016/S1359-6454(02)00526-8
    [59] YANG Y, LIAN X, WANG J. Effect of the grain boundary character distribution on the self-organization of adiabatic shear bands in 1Cr18Ni9Ti austenitic stainless steel [J]. Journal of Materials Science, 2019, 54(9): 7256–7270. doi: 10.1007/s10853-019-03377-z
    [60] WANG B, HUANG X, LIU Y, et al. Mechanical properties and shear localization of high entropy alloy CoCrFeMnNi prepared by powder metallurgy [C]//Materials Society T. TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings. Switzerland: Springer, Cham, 2018.
    [61] YANG S J, YANG Y. Thermodynamics-kinetics of twinning/martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during adiabatic shearing [J]. Scripta Materialia, 2020, 181: 115–120. doi: 10.1016/j.scriptamat.2020.02.024
    [62] PUSHKOV V A, YURLOV A V, PODURETS A M, et al. Effect of preloading on the formation of adiabatic localized shear in copper [J]. Combustion Explosion and Shock Waves, 2013, 49(5): 620–624. doi: 10.1134/S0010508213050146
    [63] HOFMANN U, EL-MAGD E. Behaviour of Cu-Zn alloys in high speed shear tests and in chip formation processes [J]. Materials Science and Engineering: A, 2005, 395(1/2): 129–140. doi: 10.1016/j.msea.2004.12.030
    [64] GU Y, NESTERENKO V F. Dynamic behavior of HIPed Ti-6Al-4V [J]. International Journal of Impact Engineering, 2007, 34(4): 771–783. doi: 10.1016/j.ijimpeng.2006.01.006
    [65] XUE Q, MEYERS M A, NESTERENKO V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy [J]. Acta Materialia, 2002, 50(3): 575–596. doi: 10.1016/S1359-6454(01)00356-1
    [66] YANG Y, JIANG F, ZHOU B M, et al. Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy [J]. Materials Science and Engineering: A, 2011, 528(6): 2787–2794. doi: 10.1016/j.msea.2010.12.053
    [67] YAO J, SUO T, ZHANG S, et al. Influence of heat-treatment on the dynamic behavior of 3D laser-deposited Ti-6Al-4V alloy [J]. Materials Science and Engineering: A, 2016, 677: 153–162. doi: 10.1016/j.msea.2016.09.036
    [68] HWANG B, LEE S, KIM Y C, et al. Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing [J]. Materials Science and Engineering: A, 2006, 441(1/2): 308–320. doi: 10.1016/j.msea.2006.08.045
    [69] YANG Y, XINMING Z, ZHENGHUA L, et al. Adiabatic shear band on the titanium side in the Ti/mild steel explosive cladding interface [J]. Acta Materialia, 1996, 44(2): 561–565. doi: 10.1016/1359-6454(95)00200-6
    [70] XUE Q, GRAY G T. Development of adiabatic shear bands in annealed 316L stainless steel: Part Ⅰ. correlation between evolving microstructure and mechanical behavior [J]. Metallurgical and Materials Transactions A, 2006, 37: 2435–2446. doi: 10.1007/BF02586217
  • 加载中
图(6)
计量
  • 文章访问数:  4142
  • HTML全文浏览量:  976
  • PDF下载量:  100
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-02-06

目录

    /

    返回文章
    返回