预加热效果对磁化套筒惯性聚变放能影响的模拟研究

赵海龙 王强 阚明先 谢龙

赵海龙, 王强, 阚明先, 谢龙. 预加热效果对磁化套筒惯性聚变放能影响的模拟研究[J]. 高压物理学报, 2021, 35(3): 033301. doi: 10.11858/gywlxb.20200661
引用本文: 赵海龙, 王强, 阚明先, 谢龙. 预加热效果对磁化套筒惯性聚变放能影响的模拟研究[J]. 高压物理学报, 2021, 35(3): 033301. doi: 10.11858/gywlxb.20200661
ZHAO Hailong, WANG Qiang, KAN Mingxian, XIE Long. Simulation of the Preheating Effects on the Discharging of Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 033301. doi: 10.11858/gywlxb.20200661
Citation: ZHAO Hailong, WANG Qiang, KAN Mingxian, XIE Long. Simulation of the Preheating Effects on the Discharging of Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 033301. doi: 10.11858/gywlxb.20200661

预加热效果对磁化套筒惯性聚变放能影响的模拟研究

doi: 10.11858/gywlxb.20200661
基金项目: 国家自然科学基金(11205145,21805262,12075226)
详细信息
    作者简介:

    赵海龙(1985-),男,博士研究生,副研究员,主要从事磁流体理论与数值模拟研究. E-mail:ifp.zhaohailong@qq.com

  • 中图分类号: O539

Simulation of the Preheating Effects on the Discharging of Magnetized Liner Inertial Fusion

  • 摘要: 得益于预加热和轴向磁场的作用,理论上磁化套筒惯性聚变(MagLIF)构型能有效降低聚变实现的难度,具有极大的应用潜力。然而,当前研究过于重视对激光能量沉积效率的提升,而忽略了预加热自身参数对MagLIF过程和内爆结果的影响。为此,采用一维集成化数值模拟程序MIST,开展了MagLIF过程中预加热效果对聚变放能影响的模拟研究,基于参数扫描方法,从简单的模型着手,逐步深入探讨相关参数对内爆结果的影响。模拟结果表明:预加热是MagLIF构型能够成功的必要条件,最佳时间是套筒即将开始向内压缩燃料的时刻;燃料预加热的设计原则是让燃料获得尽可能平缓分布的高温,而中心局部加热方式对于未能达到点火条件的负载更有优势;激光预加热模式下,脉宽越短越好,对于以ZR装置驱动能力为目标的算例而言,最佳套筒高度为1.0 cm。研究结果有助于加深对MagLIF过程中预加热机制和效果的认知和理解,对于具体的负载参数设计也有较强的指导意义。

     

  • 图  ZR装置在95 kV充电电压下的驱动电流随时间演化曲线[7]

    Figure  1.  Driving current from ZR facility with charging voltage 95 kV[7]

    图  250 eV预加热温度与无预加热条件下计算得到的燃料内能和聚变产额随时间演化曲线

    Figure  2.  Demonstrations of fusion yield and fuel internal energy calculated with 250 eV and no preheat

    图  不同初始预加热温度下计算得到的内爆结果对比

    Figure  3.  Demonstrations of implosion results calculated with different preheat temperature

    图  余弦预加热方式计算得到的滞止时刻燃料温度和密度分布曲线

    Figure  4.  Distributions of fuel temperature and density at stagnation time with cosine preheat

    图  余弦预加热方式计算得到的聚变产额与燃料内能演化曲线

    Figure  5.  Demonstrations of fusion product and internal energy calculated with cosine preheat

    图  不同沉积半径下预加热和迟滞阶段的温度分布曲线

    Figure  6.  Distributions of preheat and stagnation temperatures with different preheat radius

    图  不同沉积半径下迟滞阶段的温度分布和聚变产额演化曲线(Bz = 5 T)

    Figure  7.  Distributionsof stagnation temperature and evolvement of fusion product with different preheat radii (Bz = 5 T)

    图  不同沉积半径下预加热时刻和迟滞阶段温度分布(Bz = 5 T, Elas = 3 kJ)

    Figure  8.  Distributions of preheat and stagnation temperature with different preheat radii (Bz = 5 T, Elas = 3 kJ)

    图  不同沉积半径下磁化强度BR随时间演化曲线(Bz = 5 T, Elas = 3 kJ)

    Figure  9.  Schematic of BR evolving with time with different preheat radii (Bz = 5 T, Elas = 3 kJ)

    图  10  不同脉宽时预加热功率曲线

    Figure  10.  Schematic of preheat power with different durations

    图  11  不同激光脉宽和功率参数下预加热时燃料中温度和密度分布

    Figure  11.  Distributions of fuel temperature and density with different laser power and durations at preheat time

    图  12  简化后的ZR装置的等效电路示意图[25]

    Figure  12.  Schematic of simplified equivalent circuit of ZR facility[25]

    图  13  ZR装置绝缘堆电压曲线和MIST程序计算得到的负载电流曲线

    Figure  13.  Voltage curve from the vacuum insulator and calculated current curve by MIST code

    表  1  不同预加热温度下计算得到的内爆结果对比

    Table  1.   Calculated implosion results with different preheat temperatures

    Preheat temperature/
    eV
    Preheat energy/
    kJ
    Fuel temperature/
    keV
    Internal energy/
    (kJ·cm−1)
    Fusion yield/
    (kJ·cm−1)
    Q
    503.84.73105101.65
    1007.27.547014002.98
    15010.69.458020003.45
    20014.010.565023003.54
    25017.410.070024203.46
    30020.811.673024503.36
    35024.011.774023903.23
    下载: 导出CSV

    表  2  不同套筒高度计算得到的内爆结果对比

    Table  2.   Calculated implosion results calculated with different liner heights

    h/cmPreheat temperature/eVPeak current/MAInternal energy/(kJ·cm−1)Fusion yield/(kJ·cm−1)Total yield/kJ
    0.5089029.578624261213
    0.7561528.966821331600
    1.0045028.256516141614
    1.2536427.447811721465
    下载: 导出CSV
  • [1] AYMAR R. The ITER project [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1187–1195. doi: 10.1109/27.650895
    [2] SHIMOMURA Y, SPEARS W. Review of the ITER project [J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1369–1375. doi: 10.1109/TASC.2004.830580
    [3] HUANG C J, LI L F. Magnetic confinement fusion: a brief review [J]. Frontiers in Energy, 2018, 12(2): 305–313. doi: 10.1007/s11708-018-0539-1
    [4] HURRICANE O A, SPRINGER P T, PATEL P K, et al. Approaching a burning plasma on the NIF [J]. Physics of Plasmas, 2019, 26(5): 052704. doi: 10.1063/1.5087256
    [5] MCCRORY R L, MEYERHOFER D D, BETTI R, et al. Progress in direct-drive inertial confinement fusion [J]. Physics of Plasmas, 2008, 15(5): 055503. doi: 10.1063/1.2837048
    [6] ROSEN M D. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutorial [J]. Physics of Plasmas, 1999, 6(4): 1690–1699. doi: 10.1063/1.873427
    [7] SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 056303. doi: 10.1063/1.3333505
    [8] HARVEY-THOMPSON A J, GEISSEL M, JENNINGS C A, et al. Constraining preheat energy deposition in maglif experiments with multi-frame shadowgraphy [J]. Physics of Plasmas, 2019, 26(3): 032707. doi: 10.1063/1.5086044
    [9] PARADELA J, GARCÍA-RUBIO F, SANZ J. Alpha heating enhancement in MagLIF targets: a simple analytic model [J]. Physics of Plasmas, 2019, 26(1): 012705. doi: 10.1063/1.5079519
    [10] PERKINS L J, LOGAN B G, ZIMMERMAN G B, et al. Two-dimensional simulation of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields [J]. Physics of Plasmas, 2013, 20(7): 072708. doi: 10.1063/1.4816813
    [11] SLUTZ S A, VESEY R A. High-gain magnetized inertial fusion [J]. Physical Review Letters, 2012, 108(2): 025003. doi: 10.1103/PhysRevLett.108.025003
    [12] SEFKOW A B, SLUTZ S A, KONING J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility [J]. Physics of Plasmas, 2014, 21(7): 072711. doi: 10.1063/1.4890298
    [13] SLUTZ S A. Magnetized Liner Inertial Fusion (MagLIF): the promise and challenges [C]//Proceedings of MagLIF Workshop. Albuquerque: 2012.
    [14] GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion [J]. Physical Review Letters, 2014, 113(15): 155003. doi: 10.1103/PhysRevLett.113.155003
    [15] AWE T J, MCBRIDE R D, JENNINGS C A, et al. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field [J]. Physical Review Letters, 2013, 111(23): 235005. doi: 10.1103/PhysRevLett.111.235005
    [16] GOMEZ M P, SLUTZ S A, SEFKOW A B, et al. Recent progress in magnetized liner inertial fusion (MagLIF) experiments [R]. Austin: NNSA, 2015.
    [17] SINARS D. Magnetized Liner Inertial Fusion (MagLIF) research at Sandia national laboratories [C]//The 1st Chinese Pulsed Power Society Workshop. Chengdu, 2015.
    [18] GEISSEL M, HARVEY-THOMPSON A J, AWE T J, et al. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets [J]. Physics of Plasmas, 2018, 25(2): 022706. doi: 10.1063/1.5003038
    [19] DAVIES J R, BAHR R E, BARNAK D H, et al. Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion [J]. Physics of Plasmas, 2018, 25(6): 062704. doi: 10.1063/1.5030107
    [20] SLUTZ S A. On the feasibility of charged particle-beam preheat for MagLIF: SAND 2015-1515R [R]. Albuquerque, USA: Sandia National Laboratories, 2015.
    [21] 赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变一维集成化数值模拟 [J]. 物理学报, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411

    ZHAO H L, XIAO B, WANG G H, et al. One-dimensional integrated simulations of magnetized liner inertial fusion [J]. Acta Physica Sinica, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411
    [22] BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry [J]. Nuclear Fusion, 2000, 40(1): 59–68. doi: 10.1088/0029-5515/40/1/305
    [23] 阚明先, 王刚华, 赵海龙, 等. 金属电阻率模型 [J]. 爆炸与冲击, 2013, 33(3): 282–286. doi: 10.11883/1001-1455(2013)03-0282-05

    KAN M X, WANG G H, ZHAO H L, et al. Electrical resistivity model for metals [J]. Explosion and Shock Waves, 2013, 33(3): 282–286. doi: 10.11883/1001-1455(2013)03-0282-05
    [24] ZOLLWEG R J, LIEBERMANN R W. Electrical conductivity of nonideal plasmas [J]. Journal of Applied Physics, 1987, 62(9): 3621–3627. doi: 10.1063/1.339265
    [25] 薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展 [J]. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159

    XUE Q C, JIANG S E, WANG Z B, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [26] JENNINGS C A, CHITTENDEN J P, CUNEO M E, et al. Circuit model for driving three-dimensional resistive MHD wire array Z-pinch calculations [J]. IEEE Transactions on Plasma Science, 2010, 38(4): 529–539. doi: 10.1109/TPS.2010.2042971
    [27] MCBRIDE R D, JENNINGS C A, VESEY R A, et al. Displacement current phenomena in the magnetically insulated transmission lines of the refurbished Z accelerator [J]. Physical Review Accelerators and Beams, 2010, 13(12): 120401. doi: 10.1103/PhysRevSTAB.13.120401
    [28] SINARS D B, SLUTZ S A, HERRMANN M C, et al. Measurements of Magneto-Rayleigh-Taylor instability growth during the implosion of initially solid al tubes driven by the 20-MA, 100-ns Z facility [J]. Physical Review Letters, 2010, 105(18): 185001. doi: 10.1103/PhysRevLett.105.185001
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  3330
  • HTML全文浏览量:  1435
  • PDF下载量:  21
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-21

目录

    /

    返回文章
    返回