高压下新型双“A”层MAX相V2Ga2C 的密度泛函理论研究

王腾飞 李小雷 李露 李东 王军凯

王腾飞, 李小雷, 李露, 李东, 王军凯. 高压下新型双“A”层MAX相V2Ga2C 的密度泛函理论研究[J]. 高压物理学报, 2021, 35(3): 032202. doi: 10.11858/gywlxb.20200658
引用本文: 王腾飞, 李小雷, 李露, 李东, 王军凯. 高压下新型双“A”层MAX相V2Ga2C 的密度泛函理论研究[J]. 高压物理学报, 2021, 35(3): 032202. doi: 10.11858/gywlxb.20200658
WANG Tengfei, LI Xiaolei, LI Lu, LI Dong, WANG Junkai. Density Functional Theory of New Double “A” Layer MAX Phase V2Ga2C under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032202. doi: 10.11858/gywlxb.20200658
Citation: WANG Tengfei, LI Xiaolei, LI Lu, LI Dong, WANG Junkai. Density Functional Theory of New Double “A” Layer MAX Phase V2Ga2C under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032202. doi: 10.11858/gywlxb.20200658

高压下新型双“A”层MAX相V2Ga2C 的密度泛函理论研究

doi: 10.11858/gywlxb.20200658
基金项目: 国家自然科学基金(51001042);河南省科技攻关计划(212102210589);省部共建耐火材料与冶金国家重点实验室开放基金(G201904);河南理工大学博士基金(B2019-40)
详细信息
    作者简介:

    王腾飞(1996-),男,硕士研究生,主要从事功能陶瓷材料研究. E-mail:212006010027@home.hpu.edu.cn

    通讯作者:

    李小雷(1968-),男,博士,教授,主要从事功能陶瓷材料和超硬材料研究. E-mail:lixl@hpu.edu.cn

  • 中图分类号: O521.2; O413.1

Density Functional Theory of New Double “A” Layer MAX Phase V2Ga2C under High Pressure

  • 摘要: 基于密度泛函理论的第一性原理,研究了压强对双“A”层MAX相V2Ga2C晶体结构、弹性和电子性质的影响,并利用玻恩稳定准则预测了V2Ga2C力学稳定状态下的压强范围。计算结果表明:在0~70 GPa下,V2Ga2C的晶体结构处于力学稳定状态;随着压强的增大,V2Ga2C的晶格常数和体积均有不同程度的缩小,a轴随压强的增大收缩得最快,晶胞体积收缩了24%左右;随着压强的增加,V2Ga2C材料的维氏硬度从0 GPa压强下的18.23 GPa减小为70 GPa压强下的2.30 GPa,在20.15 GPa时从脆性材料转变为韧性材料;V2Ga2C的态密度和能带结构等电子性质随压强的变化较小,即压强对V2Ga2C的电子性质影响不大。

     

  • 图  V2Ga2C的晶体结构

    Figure  1.  Crystal structure of V2Ga2C

    图  V2Ga2C的相对晶格参数和相对体积随压强的变化

    Figure  2.  Pressure dependence of relative lattice parameters and relative unit cell volume for V2Ga2C

    图  压强与BH/GH之间的关系

    Figure  3.  Pressure dependence of BH/GH

    图  V2Ga2C材料的维氏硬度随压强的变化

    Figure  4.  Pressure dependence of Vickers hardness for V2Ga2C

    图  不同压强下V2Ga2C的能带结构

    Figure  5.  Pressure dependence of electronic band structures for V2Ga2C

    图  不同压强下V2Ga2C的总态密度

    Figure  6.  Pressure dependence of total state density for V2Ga2C

    表  1  不同压强下V2Ga2C的弹性常数

    Table  1.   Pressure dependences of elastic constants for V2Ga2C

    Pressure/GPaC11/GPaC33/GPaC44/GPaC12/GPaC13/GPa
    0275.07309.0488.9265.6948.31
    10325.89437.85103.7079.38101.23
    20392.18492.57112.70113.70122.66
    30475.27582.9099.80176.94174.81
    40462.17636.80103.00156.69180.10
    50524.87696.2551.41228.45221.66
    60558.67743.3429.53220.05219.34
    70640.36854.904.53280.99275.36
    80618.66892.67−84.84305.13305.24
    下载: 导出CSV
  • [1] WAI-YIM C, YUXIANG M, ARYAL S, et al. Intrinsic mechanical properties of 20 MAX-phase compounds [J]. Journal of the American Ceramic Society, 2013, 96(7): 2292–2297. doi: 10.1111/jace.12376
    [2] BARSOUM M W. The M N+1AXN phases: a new class of solids [J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4): 201–281. doi: 10.1016/S0079-6786(00)00006-6
    [3] BARSOUM M W, BRODKIN D, EL-RAGHY T. Layered machinable ceramics for high temperature applications [J]. Scripta Materialia, 1997, 36(5): 535–541. doi: 10.1016/S1359-6462(96)00418-6
    [4] SONG G M, LI S B, ZHAO C X, et al. Ultra-high temperature ablation behavior of Ti2AlC ceramics under an oxyacetylene flame [J]. Journal of the European Ceramic Society, 2011, 31(5): 855–862. doi: 10.1016/j.jeurceramsoc.2010.11.035
    [5] JIAO Z Y, MA S H, WANG T X. High-pressure phase stability, mechanical properties and bonding characteristics of Ti4GeC3 compound [J]. Solid State Sciences, 2015, 39: 97–104. doi: 10.1016/j.solidstatesciences.2014.12.003
    [6] HOPFELD M, GRIESELER R, VOGEL A, et al. Tribological behavior of selected M n+1AXn phase thin films on silicon substrates [J]. Surface and Coatings Technology, 2014, 257: 286–294.
    [7] HU C F, LAI C C, TAO Q, et al. Mo2Ga2C: a new ternary nanolaminated carbide [J]. Chemical Communications, 2015, 51(30): 6560–6563. doi: 10.1039/C5CC00980D
    [8] THORE A, DAHLQVIST M, ALLING B, et al. Phase stability of the nanolaminates V2Ga2C and (Mo1- xVx)2Ga2C from first-principles calculations [J]. Physical of Materials Science, 2016, 51(18): 12682–12688.
    [9] FASHANDI H, LAI C C, DAHLPVIST M, et al. Ti2Au2C and Ti3Au2C2 formed by soild state reaction of gold with Ti2AlC and Ti3AlC2 [J]. Chemical Communications, 2017, 53(69): 9554–9557. doi: 10.1039/C7CC04701K
    [10] THORE A, DAHLQVIST M, ALLING B, et al. Temperature dependent phase stability of nanolaminated ternaries from first-principles calculations [J]. Computational Materials Science, 2014, 91(2): 251–257.
    [11] 金森, 周爱国, 胡前库, 等. 三元碳化物Mo2Ga2C及其二维衍生物的研究进展 [J]. 硅酸盐通报, 2020, 39(3): 866–872.

    JIN S, ZHOU A G, HU Q K, et al. Progress in ternary carbide Mo2Ga2C and its two-dimensional derivatives [J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 866–872.
    [12] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5): 567–570.
    [13] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
    [14] CHEN Z Y, ALBRIGHT P C, SENGERS J V. Crossover from singular critical to regular classical thermodynanic behavior of fluids [J]. Physical Review A, 1990, 41(6): 3161–3177. doi: 10.1103/PhysRevA.41.3161
    [15] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865. doi: 10.1103/PhysRevLett.77.3865
    [16] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [17] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philosophical Magazine, 1954, 45(367): 823–843.
    [18] HUANG X, NAUMOV I I, RABE K M. Phonon anomalies and elastic constants of cubic NiAl from first principles [J]. Physical Review B, 2004, 70(6): 064301.
    [19] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  3655
  • HTML全文浏览量:  1592
  • PDF下载量:  33
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2020-12-31

目录

    /

    返回文章
    返回