缓释结构对B炸药烤燃响应烈度的影响

徐瑞 智小琦 王帅

徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响[J]. 高压物理学报, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
引用本文: 徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响[J]. 高压物理学报, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
XU Rui, ZHI Xiaoqi, WANG Shuai. Influence of Venting Structure on the Cook-off Response Intensity of Composition B[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
Citation: XU Rui, ZHI Xiaoqi, WANG Shuai. Influence of Venting Structure on the Cook-off Response Intensity of Composition B[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657

缓释结构对B炸药烤燃响应烈度的影响

doi: 10.11858/gywlxb.20200657
详细信息
    作者简介:

    徐 瑞(1996-),男,硕士研究生,主要从事战斗部毁伤技术研究. E-mail:2473077009@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事战斗部毁伤技术及弹药易损性研究. E-mail:zxq4060@sina.com

  • 中图分类号: TJ55

Influence of Venting Structure on the Cook-off Response Intensity of Composition B

  • 摘要: 为了研究装药在缓释结构作用下的响应特性,设计了弹药烤燃系统及弹体泄压装置,分析了B炸药在热刺激作用下泄压装置对响应烈度的影响,得到了B炸药在泄压结构作用下的升温曲线与响应结果。结果表明,无泄压孔时,装药的响应等级为爆轰反应,装药的响应温度较低,响应时间较短。泄压孔面积为装药面积的2.0%时,装药的响应等级为爆轰反应;泄压孔面积为装药面积的2.5%和3.5%时,装药的响应等级均为燃烧。弹药临近响应时刻冲开泄压孔,降低了炸药内部温度,延长了响应时间。通过数值模拟得到了装药内部温度的分布情况,响应时刻炸药温度呈层状分布,炸药响应点位于炸药顶部。RDX的分解放热是B炸药点火的主要原因。弹药泄压结构可以有效降低弹药响应的剧烈程度,提高装药的热安全性。

     

  • 图  B炸药在不同温度下稳定燃烧所需的泄压孔面积

    Figure  1.  Area of the venting structure required for the stable combustion of Composition B at different temperatures

    图  试验弹体实物照片

    Figure  2.  Physical drawing of the test ammunition

    图  试验示意图

    Figure  3.  Schematic of test

    图  测温点位置及实物照片

    Figure  4.  Locations of temperature measurement points and picture of objects

    图  不同尺寸泄压孔下弹药各测点温度-时间曲线

    Figure  5.  Temperature history curve of ammunition with venting structure of different sizes

    图  响应后的破片与弹体

    Figure  6.  Fragments and ammunition after response

    图  不同时刻的温度云图

    Figure  7.  Temperature cloud diagram at different time

    图  炸药各组分含量曲线

    Figure  8.  Component content curve of the explosive

    表  1  响应时刻炸药内部各点温度分布

    Table  1.   Temperature distribution of each point inside the explosive at the response time

    d/mmHeating rate/(℃·h−1)Response levelResponse time/hTemperature/℃Venting size
    WallPoint 1Point 2Point 3
    353.3Detonation42.2180.3204.9194.7192.1None
    3.3Detonation44.8189.7200.6200.7204.62.0%
    3.3Combustion45.7192.5223.5204.6201.42.5%
    3.3Combustion46.8196.2225.2203.8202.13.5%
    下载: 导出CSV

    表  2  炸药和壳体的材料参数及化学反应动力学参数

    Table  2.   Material parameters and chemical reaction kinetic parameters of explosives and shells

    Material$ \;\rho $/($ \rm kg\cdot {m}^{-3} $)C/$ (\rm J\cdot {kg}^{-1}\cdot {K}^{-1}) $i$Q/\rm(MJ\cdot {kg}^{-1} )$$E/\rm (MJ\cdot {mol}^{-1} )$$Z/{\rm s}^{-1}$
    RDX1 6401 1301 0.2680.2046.40 × 1017
    2 −8.0300.1894.74 × 1017
    3−65.6000.1439.54 × 1014
    TNT1 5101 6114 0.1260.1951.59 × 1015
    5 −0.3400.1601.96 × 1012
    6 −0.3400.1472.39 × 1011
    Steel8 030502.48
    下载: 导出CSV

    表  3  试验与仿真结果

    Table  3.   Experimental and simulation results

    MethodTemperature/℃
    WallPoint 1Point 2Point 3
    Test180.3204.9194.7192.1
    Simulation186.5202.3197.6192.9
    Relative error3.4%−1.3%1.5%0.4%
    下载: 导出CSV
  • [1] 刘子德, 智小琦, 王帅, 等. 几何尺寸对DNAN基熔铸炸药慢烤响应特性的影响 [J]. 火炸药学报, 2019, 42(1): 63–68.

    LIU Z D, ZHI X Q, WANG S, et al. Effect of geometric dimensions on slow cook off response characteristics of DNAN-based melt-casting explosive [J]. Chinese Journal of Explosives & Propellants, 2019, 42(1): 63–68.
    [2] 邓海, 沈飞, 梁争峰, 等. 不同约束条件下B炸药的慢烤响应特性 [J]. 火炸药学报, 2018, 41(5): 465–470.

    DENG H, SHEN F, LIANG Z F, et al. Slow cook off response characteristics of composition of Composition B under different constraints [J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 465–470.
    [3] 代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010

    DAI X G, HUANG Y M, LÜ Z J, et al. Rection behavior for PBX-2 explosive at different heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. doi: 10.3969/j.issn.1006-9941.2010.03.010
    [4] 戴湘晖, 段建, 沈子楷, 等. 侵彻弹体慢速烤燃响应特性实验研究 [J]. 兵工学报, 2020, 41(2): 291–297.

    DAI X H, DUAN J, SHEN Z K, et al. Experiment of slow cook-off response characteristics of penetrator [J]. Acta Armamentarii, 2020, 41(2): 291–297.
    [5] 刘子德, 智小琦, 周捷, 等. 药量和升温速率对DNAN基熔铸炸药烤燃特性的影响 [J]. 爆炸与冲击, 2019, 39(1): 20–24.

    LIU Z D, ZHI X Q, ZHOU J, et al. Influence of explosive mass and heating rate on cook-off response characteristics of DNAN based casting explosive [J]. Explosion and Shock Waves, 2019, 39(1): 20–24.
    [6] KELLEY S. Venting techniques for penetrator warheads [C]//Insensitive Munitions & Energetic Materials Technology Symposium. Munich, Germany: National Defense Industrial Association & Insensitive Munitions European Manufacturers Group, 2010.
    [7] MADSEN T, DEFISHER S, BAKER E L, et al. Explosive venting technology for cook-off response mitigation: ARMET-TR-10003 [R]. Picatinny Arsenal, NJ: Munitions Engineering Technology Center, 2010.
    [8] 沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273

    SHEN F, WANG S Q, WANG H. Slow release structure design and verification of HMX-based aluminized explosive charge under slow cook-off condition [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273
    [9] GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Insensitive Munitions & Energetic Materials Symposium. Munich, Germany: National Defense Industrial Association & Insensitive Munitions European Manufacturers Group, 2010.
    [10] KINNEY G F, SEWELL R G S.Venting of explosions: NWC-TM 2448 [R]. China Lake, CA: Naval Weapons Center, 1974.
    [11] 任玉新, 陈海昕. 计算流体力学基础[M]. 北京: 清华大学出版社, 2006.

    REN Y X, CHEN H X. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
    [12] MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//7th International Symposium on Detonation. Annapolis, Maryland, US: Office of Naval Research, 1981.
    [13] 陈朗, 王沛, 冯长根. 考虑相变的炸药烤燃数值模拟计算 [J]. 含能材料, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017

    CHEN L, WANG P, FENG C G. Numerical simulation of cook-off about phase transition of explosive [J]. Chinese Journal of Energetic Materials, 2009, 17(5): 568–573. doi: 10.3969/j.issn.1006-9941.2009.05.017
    [14] CHEN L, MA X, LU F, et al. Investigation of the cook-off processes of HMX-based mixed explosives [J]. Central European Journal of Energetic Materials, 2014, 11(2): 199–218.
    [15] MACOSKO C W. Rheology principles, measurements and applications [M]. New York: VCH, 1994: 92–98.
    [16] 周捷, 智小琦, 王帅, 等. B炸药慢速烤燃过程的流变特性 [J]. 爆炸与冲击, 2020, 40(5): 052301.

    ZHOU J, ZHI X Q, WANG S, et al. Rheological properties of Composition B in slow cook-off process [J]. Explosion and Shock Waves, 2020, 40(5): 052301.
    [17] 蒲翰涛, 王星, 赵寒月, 等. RDX基PBX药柱烤燃过程的数值模拟 [J]. 含能材料, 2016, 24(10): 985–989. doi: 10.11943/j.issn.1006-9941.2016.10.011

    PU H T, WANG X, ZHAO H Y, et al. Numerical simulation the cook-off of RDX-based PBX cylinder [J]. Chinese Journal of Energetic Materials, 2016, 24(10): 985–989. doi: 10.11943/j.issn.1006-9941.2016.10.011
    [18] MCCLELLAND M A, MAIENSCHEIN J L, REAUGH J E, et al. ALE3D model predictions and experimental analysis of the cook-off response of Comp B [C]//Joint Army Navy NASA Air Force Meeting. Colorado Springs, CO, 2003: 51–64.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  3132
  • HTML全文浏览量:  1503
  • PDF下载量:  33
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2020-12-25

目录

    /

    返回文章
    返回