磷石膏高温高压实验及其改性

周登峰 单双明 杨瑞东 罗朝坤 倪莘然 汪龙波

周登峰, 单双明, 杨瑞东, 罗朝坤, 倪莘然, 汪龙波. 磷石膏高温高压实验及其改性[J]. 高压物理学报, 2021, 35(3): 031101. doi: 10.11858/gywlxb.20200656
引用本文: 周登峰, 单双明, 杨瑞东, 罗朝坤, 倪莘然, 汪龙波. 磷石膏高温高压实验及其改性[J]. 高压物理学报, 2021, 35(3): 031101. doi: 10.11858/gywlxb.20200656
ZHOU Dengfeng, SHAN Shuangming, YANG Ruidong, LUO Chaokun, NI Xinran, WANG Longbo. High Temperature and High Pressure Experiment and Modification of Phosphogypsum[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031101. doi: 10.11858/gywlxb.20200656
Citation: ZHOU Dengfeng, SHAN Shuangming, YANG Ruidong, LUO Chaokun, NI Xinran, WANG Longbo. High Temperature and High Pressure Experiment and Modification of Phosphogypsum[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031101. doi: 10.11858/gywlxb.20200656

磷石膏高温高压实验及其改性

doi: 10.11858/gywlxb.20200656
基金项目: 国家重点研发计划(2018YFC1903501);贵州省科技厅科技平台及人才团队建设计划(黔科合平台人才[2018]5613)
详细信息
    作者简介:

    周登峰(1993-),男,硕士研究生,主要从事矿物学、岩石学、矿床学研究.E-mail:dfzhou2019@163.com

    通讯作者:

    杨瑞东(1963-),男,教授,博士生导师,主要从事矿床学及地球化学研究.E-mail:rdyang@gzu.edu.cn

  • 中图分类号: O521.2; TQ177.39; X754

High Temperature and High Pressure Experiment and Modification of Phosphogypsum

  • 摘要: 以磷石膏高温高压实验及其改性处理为重点研究内容,探讨了高温高压条件对磷石膏单一体系和磷石膏复合体系的影响。通过控制高温高压实验条件,探究不同磷石膏体系在300 ℃、300 MPa的温压条件下的晶体形貌及矿物组成。采用X射线衍射(XRD)、扫描电子显微镜(SEM)对合成样品的物相和形貌进行分析。XRD表征结果表明,在高温高压条件下,不同磷石膏体系的矿物种类及含量发生了明显变化,具体表现为:磷石膏-生石灰复合体系经高温高压实验后,其SiO2含量低于检测限;磷石膏-硅藻土复合体系经高温高压实验后,其矿物由二水石膏全部转化为无水石膏。SEM表征结果显示:在磷石膏单一体系、磷石膏-生石灰复合体系、磷石膏-硅灰复合体系、磷石膏-水泥复合体系中,磷石膏晶体在高温高压下可在反应釜内自发生长结晶,形貌规整且分散均匀,晶形大多呈四棱柱状,晶体表面光滑,且出现团聚现象。磷石膏-硅藻土复合体系在高温高压条件下生成大量的硫酸钙晶须,其形貌规整、分散均匀,平均直径为 2.61 μm,平均长径比约为8。

     

  • 图  原状磷石膏的SEM照片[25]

    Figure  1.  SEM photos of original phosphogypsum[25]

    图  原状磷石膏的XRD谱[26]

    Figure  2.  XRD patterns of original phosphogypsum[26]

    图  高温高压下磷石膏复合体系的XRD谱

    Figure  3.  XRD patterns of the phosphogypsum composite system under high temperature and pressure

    图  高温高压下磷石膏复合体系的SEM图像

    Figure  4.  SEM images of phosphogypsum composite system under high temperature and high pressure

    表  1  磷石膏的化学成分及含量(质量分数)[24]

    Table  1.   Chemical composition and content of phosphogypsum (Mass fraction)[24] %

    CaOFe2O3Al2O3SiO2SO3MgOP2O5TiO2CaF2H2OOther
    31.0600.1900.5204.91042.0500.1311.3500.0170.7804.99214.000
    下载: 导出CSV

    表  2  磷石膏基复合体系配料

    Table  2.   Ingredients of phosphogypsum based composite system

    SampleMixed ingredients
    APhosphogypsum
    B95% phosphogypsum + 5% quicklime powder
    C90% phosphogypsum + 10% silica fume
    D90% phosphogypsum + 10% portland cement
    E90% phosphogypsum + 10% diatomite
    下载: 导出CSV

    表  3  磷石膏复合体系的矿物成分

    Table  3.   Mineral composition of phosphogypsum composite system

    SampleMass fraction/%
    CaSO4·2H2OSiO2CaSO4
    A2.26.891.0
    B4.60 95.4
    C5.46.488.3
    D1.50.897.8
    E0 10.3 89.7
    下载: 导出CSV
  • [1] ATTAR L A, AL-OUDAT M, KANAKRI S, et al. Radiological impacts of phosphogypsum [J]. Journal of Environmental Management, 2011, 92(9): 2151–2158. doi: 10.1016/j.jenvman.2011.03.041
    [2] 夏海建. 磷石膏渣场池水循环利用过程中防堵塞技术研究[D]. 武汉: 武汉工程大学, 2015.

    XIA H J. The study on the technology of preventing blockage in recirculating water systems of phosphogypsum stacking [D]. Wuhan: Wuhan Institute of Technology, 2015.
    [3] 王河, 吴维兴, 赵谊, 等. 磷石膏防渗渣场污水控制关键技术研究 [J]. 磷肥与复肥, 2019, 34(12): 36–39. doi: 10.3969/j.issn.1007-6220.2019.12.014

    WANG H, WU W X, ZHAO Y, et al. Research on key technology of sewage control in anti-seepage field for phosphogypsum [J]. Phosphate and Compound Fertilizer, 2019, 34(12): 36–39. doi: 10.3969/j.issn.1007-6220.2019.12.014
    [4] TIAN T, YAN Y, HU Z H, et al. Utilization of original phosphogypsum for the preparation of foam concrete [J]. Construction and Building Materials, 2016, 115: 143–152. doi: 10.1016/j.conbuildmat.2016.04.028
    [5] MACÍAS F, CÁNOVAS C R, CRUZ-HERNÁNDEZ P, et al. An anomalous metal-rich phosphogypsum: characterization and classification according to international regulations [J]. Journal of Hazardous Materials, 2017, 331: 99–108. doi: 10.1016/j.jhazmat.2017.02.015
    [6] 刘骥, 唐小春, 韦显文, 等. 浅谈磷石膏对水泥性能的影响 [J]. 企业科技与发展, 2020(9): 82–83. doi: 10.3969/j.issn.1674-0688.2020.09.035

    LIU J, TANG X C, WEI X W, et al. Influence of phosphogypsum on cement properties [J]. Sci-Tech and Development of Enterprise, 2020(9): 82–83. doi: 10.3969/j.issn.1674-0688.2020.09.035
    [7] 付强强, 沈彦辉, 陈宏坤, 等. 磷石膏综合利用现状及建议 [J]. 磷肥与复肥, 2020, 35(8): 44–46. doi: 10.3969/j.issn.1007-6220.2020.08.014

    FU Q Q, SHEN Y H, CHEN H K, et al. Present situation and suggestions of comprehensive utilization of phosphogypsum [J]. Phosphate and Compound Fertilizer, 2020, 35(8): 44–46. doi: 10.3969/j.issn.1007-6220.2020.08.014
    [8] PAPASTEFANOU C, STOULOS S, IOANNIDOU A, et al. The application of phosphogypsum in agriculture and the radiological impact [J]. Journal of Environmental Radioactivity, 2006, 89(2): 188–198. doi: 10.1016/j.jenvrad.2006.05.005
    [9] 张富存, 吴洪生, 周晓冬, 等. 磷石膏资源化利用对玉米生长影响 [J]. 西南农业学报, 2012, 25(2): 566–570. doi: 10.3969/j.issn.1001-4829.2012.02.043

    ZHANG F C, WU H S, ZHOU X D, et al. Effect of recycling and reuse of phosphogypsum on corn growth [J]. Southwest China Journal of Agricultural Sciences, 2012, 25(2): 566–570. doi: 10.3969/j.issn.1001-4829.2012.02.043
    [10] 李季, 吴洪生, 高志球, 等. 磷石膏对麦田CO2排放和小麦产量的影响及其经济环境效益分析 [J]. 环境科学, 2015, 36(8): 3099–3105. doi: 10.13227/j.hjkx.2015.08.051

    LI J, WU H S, GAO Z Q, et al. Impact of phosphogypsum wastes on the wheat growth and CO2 emissions and evanuation of economic-environmental benefit [J]. Environmental Science, 2015, 36(8): 3099–3105. doi: 10.13227/j.hjkx.2015.08.051
    [11] SHEN W G, GAN G J, DONG R, et al. Utilization of solidified phosphogypsum as Portland cement retarder [J]. Journal of Material Cycles and Waste Management, 2012, 14(3): 228–233. doi: 10.1007/s10163-012-0065-x
    [12] 贾兴文, 吴洲, 马英. 磷石膏建材资源化利用现状 [J]. 材料导报, 2013, 27(23): 139–141, 146.

    JIA X W, WU Z, MA Y. Present status of phosphogypsum utilization in building materials [J]. Materials Review, 2013, 27(23): 139–141, 146.
    [13] 谭明洋, 张西兴, 相利学, 等. 磷石膏作水泥缓凝剂的研究进展 [J]. 无机盐工业, 2016, 48(7): 4–6.

    TAN M Y, ZHANG X X, XIANG L X, et al. Research progress of phosphorus gypsum as cement retarder [J]. Inorganic Chemicals Industry, 2016, 48(7): 4–6.
    [14] 谢占金, 石文建, 金翠霞, 等. 晶种及晶型助长剂对磷石膏制备硫酸钙晶须的影响 [J]. 环境工程学报, 2012, 6(4): 1348–1352.

    XIE Z J, SHI W J, JIN C X, et al. Effect of crystal seed and crystal promoter on the preparation of calcium sulphate whiskers using phosphogypsum [J]. Chinese Journal of Environmental Engineering, 2012, 6(4): 1348–1352.
    [15] 杨荣华, 宋锡高. 磷石膏的净化处理及制备硫酸钙晶须的研究 [J]. 无机盐工业, 2012, 44(4): 31–34. doi: 10.3969/j.issn.1006-4990.2012.04.011

    YANG R H, SONG X G. Research on purification of phosphogypsum and preparation of calcium sulfate whisker [J]. Inorganic Chemicals Industry, 2012, 44(4): 31–34. doi: 10.3969/j.issn.1006-4990.2012.04.011
    [16] SHENG Z M, ZHOU J, SHU Z, et al. Calcium sulfate whisker reinforced non-fired ceramic tiles prepared from phosphogypsum [J]. Boletín de la Sociedad Española de Cerámicay Vidrio, 2018, 57(2): 73–78. doi: 10.1016/j.bsecv.2017.09.005
    [17] TAYIBI H, CHOURA M, LÓPEZ F A, et al. Environmental impact and management of phosphogypsum [J]. Journal of Environmental Management, 2009, 90(8): 2377–2386. doi: 10.1016/j.jenvman.2009.03.007
    [18] 王慧媛, 郑海飞. 高温高压实验及原位测量技术 [J]. 地学前缘, 2009, 16(1): 17–26. doi: 10.3321/j.issn:1005-2321.2009.01.004

    WANG H Y, ZHENG H F. High pressure-temperature experiment and in-situ measurement technology [J]. Earth Science Frontiers, 2009, 16(1): 17–26. doi: 10.3321/j.issn:1005-2321.2009.01.004
    [19] MCMILLAN P F. New materials from high-pressure experiments [J]. Nature Materials, 2002, 1(1): 19–25. doi: 10.1038/nmat716
    [20] 余光, 柯龙华, 叶友章. 高温高压制备微晶纤维素新工艺的研究 [J]. 福建林业科技, 2010, 37(4): 58–61. doi: 10.3969/j.issn.1002-7351.2010.04.012

    YU G, KE L H, YE Y Z. Study on the new process of microcrystalline cellulose in high temperature and pressure [J]. Journal of Fujian Forestry Science and Technology, 2010, 37(4): 58–61. doi: 10.3969/j.issn.1002-7351.2010.04.012
    [21] 陶强, 王欣, 崔田, 等. 钼-硼化合物的高温高压制备及硬度特性探索[C]//第十四届全国物理力学学术会议缩编文集. 绵阳: 中国力学学会, 2016.

    TAO Q, WANG X, CUI T, et al. Preparation of molybdenum boron compounds at high temperature and high pressure and exploration of their hardness characteristics [C]//Abstracts of the 14th National Conference on Physical Mechanics. Mianyang: Chinese Society of Mechanics, 2016.
    [22] 侯领, 沈维霞, 房超, 等. 高导热金刚石/铝复合材料的高温高压制备 [J]. 高压物理学报, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514

    HOU L, SHEN W X, FANG C, et al. High thermal conductivity of diamond/Al composites via high pressure and high temperature sintering [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
    [23] 贾晓鹏. 类天然金刚石的高温高压合成研究 [J]. 原子与分子物理学报, 2020, 37(6): 909–915. doi: 10.19855/j.1000-0364.2020.064001

    JIA X P. Study on the synthesis of “natural” diamond at high temperature and high pressure [J]. Journal of Atomic and Molecular Physics, 2020, 37(6): 909–915. doi: 10.19855/j.1000-0364.2020.064001
    [24] 刘江, 杨红艳, 石文建, 等. 磷石膏水热法合成硫酸钙晶须 [J]. 化工环保, 2014, 34(2): 141–144. doi: 10.3969/j.issn.1006-1878.2014.02.011

    LIU J, YANG H Y, SHI W J, et al. Synthesis of calcium sulphate whisker from phosphogypsum by hydrothermal method [J]. Environmental Protection of Chemical Industry, 2014, 34(2): 141–144. doi: 10.3969/j.issn.1006-1878.2014.02.011
    [25] 李箫, 王莹, 万惠文, 等. 磷石膏制建筑石膏的试验研究 [J]. 武汉理工大学学报, 2015, 37(12): 40–46.

    LI X, WANG Y, WAN H W, et al. Experimental study on the gypsum preparation by the phosphogypsum [J]. Journal of Wuhan University of Technology, 2015, 37(12): 40–46.
    [26] 熊春杨, 吕淑珍, 牛云辉, 等. 四川某地磷石膏制备建筑石膏及其性能研究 [J]. 非金属矿, 2020, 43(3): 33–36. doi: 10.3969/j.issn.1000-8098.2020.03.009

    XIONG C Y, LÜ S Z, NIU Y H, et al. Preparation of building gypsum from phosphogypsum in Sichuan and its properties [J]. Non-Metallic Mines, 2020, 43(3): 33–36. doi: 10.3969/j.issn.1000-8098.2020.03.009
    [27] 耿乾, 孙红娟, 彭同江, 等. 焙烧与生石灰改性对磷石膏中可溶磷含量的影响 [J]. 矿产保护与利用, 2019, 39(4): 9–13, 82. doi: 10.13779/j.cnki.issn1001-0076.2019.04.002

    GENG Q, SUN H J, PENG T J, et al. Effect of roasting and quicklime modification on soluble phosphorus content in phosphogypsum [J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 9–13, 82. doi: 10.13779/j.cnki.issn1001-0076.2019.04.002
    [28] 万惠文, 王银, 戴鹏, 等. 磷石膏/矿粉复合过硫胶凝材料的制备研究 [J]. 武汉理工大学学报, 2014, 36(3): 23–27.

    WAN H W, WANG Y, DAI P, et al. Study of phosphogysum/slag compound persulfate cementitious material [J]. Journal of Wuhan University of Technology, 2014, 36(3): 23–27.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  4868
  • HTML全文浏览量:  2022
  • PDF下载量:  40
出版历程
  • 收稿日期:  2020-12-13
  • 修回日期:  2021-01-25

目录

    /

    返回文章
    返回