惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用

刘洋 李展 方秦 王森佩 陈力

刘洋, 李展, 方秦, 王森佩, 陈力. 惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用[J]. 高压物理学报, 2021, 35(5): 055201. doi: 10.11858/gywlxb.20200654
引用本文: 刘洋, 李展, 方秦, 王森佩, 陈力. 惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用[J]. 高压物理学报, 2021, 35(5): 055201. doi: 10.11858/gywlxb.20200654
LIU Yang, LI Zhan, FANG Qin, WANG Senpei, CHEN Li. Inert Gas and Water Vapor Suppressing Overpressure and Its Oscillation of Gas Explosion in Long Straight Space[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055201. doi: 10.11858/gywlxb.20200654
Citation: LIU Yang, LI Zhan, FANG Qin, WANG Senpei, CHEN Li. Inert Gas and Water Vapor Suppressing Overpressure and Its Oscillation of Gas Explosion in Long Straight Space[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055201. doi: 10.11858/gywlxb.20200654

惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用

doi: 10.11858/gywlxb.20200654
基金项目: 江苏省自然科学基金(BK20190571);国家自然科学基金(52008392)
详细信息
    作者简介:

    刘 洋(1996-),男,硕士研究生,主要从事燃气爆炸荷载研究. E-mail:20145035@cqu.edu.cn

    通讯作者:

    李 展(1990-),男,博士,讲师,主要从事燃气爆炸灾害效应研究. E-mail:lz.9008@163.com

  • 中图分类号: O381; TD712

Inert Gas and Water Vapor Suppressing Overpressure and Its Oscillation of Gas Explosion in Long Straight Space

  • 摘要: 长直空间燃气爆炸超压及其振荡将对人员和结构安全产生不利影响。为减轻燃气爆炸危害,基于CFD软件FLACS建立了长直管道空间燃气爆炸数值模型,并对模型进行了验证。利用已验证的数值模型,研究了添加不同体积分数CO2、N2和水蒸气的化学当量比CH4/空气混合气体的爆炸,讨论了惰性气体和水蒸气的体积分数对爆炸超压及其振荡的影响,并对比了3种气体的抑爆效果。结果表明:CO2、水蒸气和N2的体积分数每增加10%,密闭管道气体爆炸的最终超压将分别下降81、47、65 kPa,尾端泄爆管道分别下降24、25、20 kPa,3种气体的体积分数分别为25%、26%、30%时,爆炸被完全抑制;CO2、水蒸气和N2均能有效抑制爆炸超压的振荡,压力振幅和压力振荡频率均随添加气体体积分数的增加而减小;CO2对爆炸超压及其振荡的抑制效果最好,水蒸气次之,N2最弱,这与3种气体的物理特性及其抑爆机理的差异有关。

     

  • 图  管道模型及其网格划分

    Figure  1.  Tube model and its meshing

    图  模型验证工况[38]

    Figure  2.  Cases of model verification[38]

    图  模型验证(测点1)

    Figure  3.  Numerical model verification (pressure sensor 1)

    图  混合气体体积示意图

    Figure  4.  Diagram of premixed gas volume

    图  不同CO2体积分数条件下的超压时程曲线

    Figure  5.  Overpressure-time history curves of CO2 with different volume fractions

    图  最终超压及升压时间随CO2体积分数的变化

    Figure  6.  Change of final overpressure and pressure rising time with CO2 volume fraction

    图  不同CO2体积分数下超压振幅随时间的变化

    Figure  7.  Variation of overpressure amplitude of different volume fractions of CO2 with time

    图  不同CO2体积分数下超压振荡频率随时间的变化

    Figure  8.  Variation of overpressure oscillation frequency of different volume fractions of CO2 with time

    图  不同N2体积分数条件下的超压时程曲线

    Figure  9.  Overpressure-time history curves of N2 with different volume fractions

    图  10  最终超压及升压时间随N2体积分数的变化

    Figure  10.  Change of final overpressure and pressure rising time with N2 volume fraction

    图  11  不同N2体积分数下超压振幅随时间的变化

    Figure  11.  Variation of overpressure amplitude of different volume fractions of N2 with time

    图  12  不同N2体积分数下超压振荡频率随时间的变化

    Figure  12.  Variation of overpressure oscillation frequency of different volume fractions of N2 with time

    图  13  不同水蒸气体积分数条件下的超压时程曲线

    Figure  13.  Overpressure-time history curves of N2 with different volume fractions

    图  14  最终超压及升压时间随水蒸气体积分数的变化

    Figure  14.  Change of final overpressure and pressure rising time with water vapor volume fraction

    图  15  不同水蒸气体积分数下超压振幅随时间的变化

    Figure  15.  Variation of overpressure amplitude of different volume fractions of water vapor with time

    图  16  不同水蒸气体积分数下超压振荡频率随时间的变化

    Figure  16.  Variation of overpressure oscillation frequency of different volume fractions of water vapor with time

    图  17  不同CO2体积分数条件下的超压时程曲线

    Figure  17.  Overpressure-time history curves of CO2 with different volume fractions

    图  18  最终超压和升压时间随CO2体积分数的变化

    Figure  18.  Change of final overpressure and pressure rising time with CO2 volume fraction

    图  19  不同CO2体积分数下超压振幅随时间的变化

    Figure  19.  Variation of overpressure amplitude of different volume fractions of CO2 with time

    图  20  不同CO2体积分数下超压振荡频率随时间的变化

    Figure  20.  Variation of overpressure oscillation frequency of different volume fractions of CO2 with time

    图  21  不同N2体积分数条件下的超压时程曲线

    Figure  21.  Overpressure-time history curves of N2 with different volume fractions

    图  22  最终超压及升压时间随N2体积分数的变化

    Figure  22.  Change of final overpressure and pressure rising time with N2 volume fraction

    图  23  不同N2体积分数下超压振幅随时间的变化

    Figure  23.  Variation of overpressure amplitude of different volume fractions of N2 with time

    图  24  不同N2体积分数下超压振荡频率随时间的变化

    Figure  24.  Variation of overpressure oscillation frequency of different volume fractions of N2 with time

    图  25  不同水蒸气体积分数条件下的超压时程曲线

    Figure  25.  Overpressure-time history curves of water vapor with different volume fractions

    图  26  最终超压及升压时间随水蒸气体积分数的变化

    Figure  26.  Change of final overpressure and pressure rising time with water vapor volume fraction

    图  27  不同水蒸气体积分数下超压振幅随时间的变化

    Figure  27.  Variation of overpressure amplitude of different volume fractions of water vapor with time

    图  28  不同水蒸气体积分数下超压振荡频率随时间的变化

    Figure  28.  Variation of overpressure oscillation frequency of different volume fractions of water vapor with time

    图  29  密闭管道内CO2、N2和水蒸气对爆炸的抑制作用对比

    Figure  29.  Comparison of suppression of CO2, N2 and water vapor on the explosion in the closed tube

    图  30  尾端泄爆管道内CO2、N2和水蒸气对爆炸的抑制作用对比

    Figure  30.  Comparison of suppression of CO2, N2 and water vapor on the explosion in the end-vented tube

    表  1  添加气体的体积分数(密闭/泄爆)

    Table  1.   Volume fraction of added gas (closed/end-vented) % 

    CO2N2Water vapor (H2O) CO2N2Water vapor (H2O)
    000 202520
    454 243024
    8108 253126
    121512 27
    162016
    下载: 导出CSV
  • [1] 李建国, 郭昭胜, 张永生, 等. 室内燃气爆炸对混凝土结构的破坏及有限元分析 [J]. 消防科学与技术, 2018, 37(4): 563–566. doi: 10.3969/j.issn.1009-0029.2018.04.041

    LI J G, GUO Z S, ZHANG Y S, et al. The concrete structural failure caused by internal gas explosion and its finite element analysis [J]. Fire Science and Technology, 2018, 37(4): 563–566. doi: 10.3969/j.issn.1009-0029.2018.04.041
    [2] 闫秋实, 刘晶波, 伍俊. 典型地铁车站内爆炸致人员伤亡区域的预测研究 [J]. 工程力学, 2012, 29(2): 81–88.

    YAN Q S, LIU J B, WU J. Estimation of casualty areas in subway station subjected to terrorist bomb [J]. Engineering Mechanics, 2012, 29(2): 81–88.
    [3] 王波, 杜扬, 齐圣, 等. 油气爆炸在细长密闭管道内的振荡传播特性 [J]. 振动与冲击, 2017, 36(17): 97–103, 126.

    WANG B, DU Y, QI S, et al. Oscillation propagation characteristics of gasoline-air mixture explosion in elongated closed tubes [J]. Journal of Vibration and Shock, 2017, 36(17): 97–103, 126.
    [4] XIAO H H, MAKAROV D, SUN J H, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct [J]. Combustion and Flame, 2012, 159(4): 1523–1538.
    [5] LI H W, GUO J, YANG F Q, et al. Explosion venting of hydrogen-air mixtures from a duct to a vented vessel [J]. International Journal of Hydrogen Energy, 2018, 43(24): 11307–11313.
    [6] YAO Z F, DENG H X, ZHAO W L, et al. Experimental study on explosion characteristics of premixed syngas/air mixture with different ignition positions and opening ratios [J]. Fuel, 2020, 279: 118426.
    [7] LV P F, ZHANG J X, JU M H, et al. Influence of branch pipes on the deflagration characteristics of methane in confined space [J]. Process Safety Progress, 2020, 40(1): e12152.
    [8] 李国庆, 杜扬, 王波, 等. 点火位置对管道内油气泄压爆炸超压特性影响 [J]. 振动与冲击, 2017, 36(24): 204–212.

    LI G Q, DU Y, WANG B, et al. Effects of ignition position on overpressure characteristics of vented gasoline-air mixture explosion in a pipe [J]. Journal of Vibration and Shock, 2017, 36(24): 204–212.
    [9] PHYLAKTOU H, ANDREWS G E. Gas explosions in long closed vessels [J]. Combustion Science and Technology, 1991, 77(1/2/3): 27–39.
    [10] 郑立刚, 朱小超, 于水军, 等. 浓度和点火位置对氢气-空气预混气爆燃特性影响 [J]. 化工学报, 2019, 70(1): 408–416.

    ZHENG L G, ZHU X C, YU S J, et al. Effect of concentration and ignition position on characteristics of premixed hydrogen-air deflagration [J]. CIESC Journal, 2019, 70(1): 408–416.
    [11] SEARBY G. Acoustic instability in premixed flames [J]. Combustion Science and Technology, 1992, 81(4/5/6): 221–231.
    [12] XING H D, XU Q M, SONG X Z, et al. The effects of vent area and ignition position on pressure oscillations in a large L/D ratio duct [J]. Process Safety and Environmental Protection, 2020, 135: 166–170.
    [13] 朱传杰, 林柏泉, 江丙友, 等. 瓦斯爆炸在封闭管道内冲击振荡特征的数值模拟 [J]. 振动与冲击, 2012, 31(16): 8–12, 17. doi: 10.3969/j.issn.1000-3835.2012.16.002

    ZHU C J, LIN B Q, JIANG B Y, et al. Numerical simulation on oscillation and shock of gas explosion in a closed end pipe [J]. Journal of Vibration and Shock, 2012, 31(16): 8–12, 17. doi: 10.3969/j.issn.1000-3835.2012.16.002
    [14] ZHU C J, LIN B Q, JIANG B Y, et al. Numerical simulation of blast wave oscillation effects on a premixed methane/air explosion in closed-end ducts [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 851–861.
    [15] 韦世豪, 杜扬, 王世茂, 等. 不同形状受限空间内油气爆燃特性的实验研究 [J]. 中国安全生产科学技术, 2017, 13(5): 41–47.

    WEI S H, DU Y, WANG S M, et al. Experimental study on deflagration characteristics of gasoline-air mixture in confined space with different shapes [J]. Journal of Safety Science and Technology, 2017, 13(5): 41–47.
    [16] 韦世豪, 杜扬, 王世茂, 等. 非均匀容积式受限空间油气爆炸超压与火焰特征 [J]. 后勤工程学院学报, 2017, 33(4): 30–36. doi: 10.3969/j.issn.1672-7843.2017.04.006

    WEI S H, DU Y, WANG S M, et al. Overpressure and flame characteristics of gasoline-vapor explosion in the non-uniform volumetric confined space [J]. Journal of Logistical Engineering University, 2017, 33(4): 30–36. doi: 10.3969/j.issn.1672-7843.2017.04.006
    [17] 李毅. 管道中氢-空和甲烷-空预混火焰传播与压力振荡研究 [D]. 焦作: 河南理工大学, 2015.
    [18] 路长, 李毅, 潘荣锟. 管道氢气-空气预混气体爆炸特征的试验研究 [J]. 安全与环境学报, 2016, 16(3): 38–42.

    LU C, LI Y, PAN R K, et al. Experimental study on explosion tendency of hydrogen-air premixed gases in the duct [J]. Journal of Safety and Environment, 2016, 16(3): 38–42.
    [19] 王亚磊, 郑立刚, 于水军, 等. 约束端面对管内甲烷爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(9): 139–148.

    WANG Y L, ZHENG L G, YU S J, et al. Effect of vented end faces on characteristics of methane explosion in duct [J]. Explosion and Shock Waves, 2019, 39(9): 139–148.
    [20] WANG Z R, NI L, LIU X, et al. Effects of N2/CO2 on explosion characteristics of methane and air mixture [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 10–15. doi: 10.1016/j.jlp.2014.06.004
    [21] LI M, XIAO Y, DENG J, et al. Effect of CO2 on explosion limits of flammable gases in goafs [J]. Mining Science and Technology, 2010, 20(2): 193–197.
    [22] LI M H, XU J C, WANG C J, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N2/CO2 in a closed compartment [J]. Fuel, 2019, 255(1): 115747.
    [23] 张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912.

    ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912.
    [24] 李凌飞. 甲烷爆炸特性及其抑爆技术研究[D]. 太原: 中北大学, 2012.
    [25] 任韶然. 惰性及特种可燃气体对甲烷爆炸特性的影响实验及分析 [J]. 天然气工业, 2013, 33(10): 110–115. doi: 10.3787/j.issn.1000-0976.2013.10.019

    REN S R. An experimental study of effects of insert and special flammable gases on methane’s explosion characteristics [J]. Natural Gas Industry, 2013, 33(10): 110–115. doi: 10.3787/j.issn.1000-0976.2013.10.019
    [26] 王华, 葛岭梅, 邓军. 惰性气体抑制矿井瓦斯爆炸的实验研究 [J]. 矿业安全与环保, 2008, 35(1): 4–7. doi: 10.3969/j.issn.1008-4495.2008.01.002

    WANG H, GE L M, DENG J. Experimental study of using inert gas to suppress mine gas explosion [J]. Mining Safety & Environmental Protection, 2008, 35(1): 4–7. doi: 10.3969/j.issn.1008-4495.2008.01.002
    [27] 李成兵. N2/CO2/H2O抑制甲烷爆炸化学动力学机理分析 [J]. 中国安全科学学报, 2010, 20(8): 88–92. doi: 10.3969/j.issn.1003-3033.2010.08.014

    LI C B. Chemical kinetics mechanism analysis of N2/CO2/H2O suppressing methane explosion [J]. China Safety Science Journal, 2010, 20(8): 88–92. doi: 10.3969/j.issn.1003-3033.2010.08.014
    [28] XIE Y L, WANG J H, ZHANG M, et al. Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO2 [J]. Energy and Fuels, 2013, 27: 6231–6237. doi: 10.1021/ef401220h
    [29] 秦文茜, 王喜世, 谷睿, 等. 超细水雾作用下瓦斯的爆炸压力及升压速率 [J]. 燃烧科学与技术, 2012, 18(1): 90–95.

    QIN W Q, WANG X S, GU R, et al. Methane explosion overpressure and overpressure rise rate with suppression by ultra-fine water mist [J]. Journal of Combustion Science and Technology, 2012, 18(1): 90–95.
    [30] 康泉胜, 李振明, 王睿, 等. 超细水雾对管内丙烷爆炸火焰抑制效果的试验研究 [J]. 安全与环境学报, 2015, 15(6): 111–114.

    KANG Q S, LI Z M, WANG R, et al. Experimental study on the inhibition effects of the ultra-fine water mist on the propane explosion flame in the tube [J]. Journal of Safety and Environment, 2015, 15(6): 111–114.
    [31] 高旭亮. 超细水雾抑制甲烷爆炸实验与数值模拟 [D]. 大连: 大连理工大学, 2014.
    [32] 刘丹, 司荣军, 李润之. 环境湿度对瓦斯爆炸特性的影响 [J]. 高压物理学报, 2015, 29(4): 307–312. doi: 10.11858/gywlxb.2015.04.011

    LIU D, SI R J, LI R Z. Ambient humidity on explosion characteristics of methane/air mixture [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 307–312. doi: 10.11858/gywlxb.2015.04.011
    [33] GEXCON A S. FLACS V10. 8 user’s manual [Z]. Bergen, Norway: GEXCON AS, 2017.
    [34] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269–289.
    [35] 陈晓坤, 丁园月, 程方明, 等. CO2对矿井多组分可燃性气体抑爆特性的影响 [J]. 煤炭科学技术, 2015, 43(3): 43–47.

    CHEN X K, DING Y Y, CHENG F M, et al. Influence of CO2 on explosion suppression characteristics of multicomponent flammable gas in coal mine [J]. Coal Science and Technology, 2015, 43(3): 43–47.
    [36] 罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. doi: 10.11883/1001-1455-(2015)03-0393-08

    LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. doi: 10.11883/1001-1455-(2015)03-0393-08
    [37] 张印, 赵东风, 刘义. 基于FLACS的CH4/CO2/air混合气爆炸参数分析 [J]. 中国安全生产科学技术, 2016, 12(9): 36–40.

    ZHANG Y, ZHAO D F, LIU Y. Analysis on explosion parameters of CH4/CO2/air mixed gas based on FLACS [J]. Journal of Safety Science and Technology, 2016, 12(9): 36–40.
    [38] LI Z, CHEN L, YAN H C, et al. Gas explosions of methane-air mixtures in a large-scale tube [J]. Fuel, 2021, 285: 119239.
    [39] 杨春丽, 刘艳, 胡玢, 等. 氮气和水蒸气对瓦斯爆炸基元反应的影响及抑爆机理分析 [J]. 高压物理学报, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012

    YANG C L, LIU Y, HU F, et al. Effect of nitrogen an water vapor on methane-air mixture explosion elementary reaction suppression mechanism [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012
    [40] 袁渭兰, 吕卫民, 贾忠湖. 气体动力学[M]. 北京: 科学出版社, 2013: 55.
    [41] 卓士创, 董慎行. 弹簧振子在定常干摩擦阻尼作用下的振动 [J]. 大学物理, 2001(6): 17–21, 33. doi: 10.3969/j.issn.1000-0712.2001.06.005

    ZHUO S C, DONG S X. The oscillation of a spring oscillator under constant dry frictional damping [J]. College Physics, 2001(6): 17–21, 33. doi: 10.3969/j.issn.1000-0712.2001.06.005
  • 加载中
图(30) / 表(1)
计量
  • 文章访问数:  1956
  • HTML全文浏览量:  1089
  • PDF下载量:  30
出版历程
  • 收稿日期:  2020-12-11
  • 修回日期:  2021-01-13

目录

    /

    返回文章
    返回