Cu-Ni-Al和Cu聚能射流侵彻后钢靶的毁伤特征

张超霞 刘迎彬 胡晓艳 张增 薛瑞峰 杨丽 袁磊

张超霞, 刘迎彬, 胡晓艳, 张增, 薛瑞峰, 杨丽, 袁磊. Cu-Ni-Al和Cu聚能射流侵彻后钢靶的毁伤特征[J]. 高压物理学报, 2021, 35(3): 035101. doi: 10.11858/gywlxb.20200651
引用本文: 张超霞, 刘迎彬, 胡晓艳, 张增, 薛瑞峰, 杨丽, 袁磊. Cu-Ni-Al和Cu聚能射流侵彻后钢靶的毁伤特征[J]. 高压物理学报, 2021, 35(3): 035101. doi: 10.11858/gywlxb.20200651
ZHANG Chaoxia, LIU Yingbin, HU Xiaoyan, ZHANG Zeng, XUE Ruifeng, YANG Li, YUAN Lei. Damage Characteristics of Steel Targets Penetrated by Cu-Ni-Al and Cu Shaped Charge Jets[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035101. doi: 10.11858/gywlxb.20200651
Citation: ZHANG Chaoxia, LIU Yingbin, HU Xiaoyan, ZHANG Zeng, XUE Ruifeng, YANG Li, YUAN Lei. Damage Characteristics of Steel Targets Penetrated by Cu-Ni-Al and Cu Shaped Charge Jets[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035101. doi: 10.11858/gywlxb.20200651

Cu-Ni-Al和Cu聚能射流侵彻后钢靶的毁伤特征

doi: 10.11858/gywlxb.20200651
基金项目: 国家自然科学基金(11802274)
详细信息
    作者简介:

    张超霞(1994-),女,硕士,主要从事弹药毁伤研究. E-mail:chaoxiall@163.com

    通讯作者:

    刘迎彬(1985-),男,博士,副教授,主要从事武器系统与防护研究. E-mail:ybliu@nuc.edu.cn

  • 中图分类号: TJ410

Damage Characteristics of Steel Targets Penetrated by Cu-Ni-Al and Cu Shaped Charge Jets

  • 摘要: 为了对比分析Cu-Ni-Al反应聚能射流和惰性Cu聚能射流对45钢靶的宏观侵彻特性和靶板的微观组织特征,分别进行了Cu-Ni-Al和Cu药型罩的侵彻实验,并利用光学显微镜、扫描电镜、能量色散光谱仪和Vickers显微硬度测量系统对回收钢靶进行表征。实验结果表明:Cu-Ni-Al反应射流对45钢的穿深与Cu射流相比明显降低,但其平均入口孔径提高了33.3%。两种聚能射流侵彻作用下钢靶中均存在残余射流区、白色区(马氏体和奥氏体的混合物)和变形区。与Cu射流相比,Cu-Ni-Al反应射流孔壁残余射流区的硬度值提高了34 MPa,孔壁尾部白色区的硬度值增加了95 MPa,其孔壁头部白色区的硬度值降低了28 MPa。两种聚能射流孔壁尾部白色区的硬度值均高于头部。研究结果可为评估反应材料药型罩聚能装药战斗部的毁伤效应提供一定的参考。

     

  • 图  粉末药型罩:(a)Cu-Ni-Al药型罩,(b)Cu药型罩

    Figure  1.  Powder shaped charge liner: (a) Cu-Ni-Al SCL, (b) Cu SCL

    图  聚能装药结构

    Figure  2.  Shaped charge device

    图  侵彻实验布置

    Figure  3.  Penetration experimental arrangement

    图  两种射流侵彻后钢靶的宏观特征:(a)Cu-Ni-Al,(b)Cu

    Figure  4.  Macroscopic features of steel targets penetrated by (a) Cu-Ni-Al and (b) Cu jet

    图  Cu-Ni-Al射流侵彻钢靶孔壁的OM图像:(a)孔壁头部区域,(b)孔壁尾部区域

    Figure  5.  OM images of the crater wall of steel targets penetrated by Cu-Ni-Al jet: (a) the head of the crater wall, (b) the tail of the crater wall

    图  Cu射流侵彻钢靶孔壁的OM图像:(a)孔壁头部区域,(b)孔壁头部射流冲刷区,(c)孔壁尾部区域

    Figure  6.  OM image of the crater wall of targets penetrated by Cu jet: (a) the head of the crater wall, (b) the scouring area of the jet in the head of the crater wall, (c) the tail of the crater wall

    图  两种射流孔壁尾部SEM/EDS点扫结果:(a)Cu-Ni-Al,(b)Cu

    Figure  7.  SEM/EDS point scanning results in the tail of the crater wall of two jets: (a) Cu-Ni-Al, (b) Cu

    图  两种射流孔壁尾部SEM/EDS线扫结果:(a) Cu-Ni-Al, (b) Cu

    Figure  8.  SEM/EDS line scanning results in the tail of the crater wall of two jets: (a) Cu-Ni-Al,(b) Cu

    图  Cu-Ni-Al和Cu射流侵彻钢靶孔壁的维氏显微硬度

    Figure  9.  Vickers microhardness of the crater wall of steel targets penetrated by Cu-Ni-Al and Cu jets

    表  1  粉末属性

    Table  1.   Properties of powders

    MaterialTheoretical density/(g·cm−3)ShapeGranularity/$ {\text{μ}}{\rm{m}}$Purity/%
    Nickel8.90Thorny rounded2−699.9
    Aluminum2.70Rounded6−1599.9
    Copper8.96Rounded20−5099.9
    下载: 导出CSV

    表  2  药型罩的相关参数

    Table  2.   Parameters of SCLs

    SCLNumberMass ratioMass/gρAMD/(g·cm−3)Height/mmThickness/mmDimension sizes/mmPorosity/%
    Cu-Ni-AlA-130∶35∶3527.114.7746.901.730.033.44
    A-230∶35∶3527.374.7446.981.750.024.05
    A-330∶35∶3527.724.7647.021.750.043.64
    CuB-149.928.3546.871.740.026.81
    B-250.008.3646.981.750.046.70
    B-350.018.3346.951.780.017.03
    下载: 导出CSV

    表  3  45钢的化学成分及含量

    Table  3.   Chemical composition and content of 45 steel % 

    CSiMnCrNiCuPS
    0.42−0.500.17−0.370.50−0.80≤0.25≤0.30≤0.25≤0.035≤0.035
    下载: 导出CSV

    表  4  两种药型罩的侵彻参数

    Table  4.   Penetration parameters of two different SCLs

    SCLNumberPenetration
    depth/mm
    Average penetration
    depth/mm
    Crater entrance
    diameter/mm
    Average crater
    entrance diameter/mm
    Cu-Ni-AlA-1114.523.0
    A-2118.0117.721.522.2
    A-3120.522.0
    CuB-1181.014.5
    B-2175.0176.515.014.8
    B-3173.515.0
    下载: 导出CSV

    表  5  两种药型罩侵彻钢靶后各影响区域的厚度参数

    Table  5.   Thickness parameters of the affected zones in steel targets penetrated by two different SCLs

    SCLPart of targetsThickness/μm
    Residual jet zone“White” zoneDeformation zoneTotal affected zone
    Cu-Ni-AlHead10−11080−150110−260200−520
    Tail40−170130−41050−190220−770
    CuHead10−300−5400−600410−635
    Tail40−70120−180150−210310−460
    下载: 导出CSV
  • [1] 刘迎彬. 聚能粒子流的形成与侵彻研究 [D].合肥: 中国科学技术大学, 2012.

    LIU Y B. The mechanism of formation and penetration of shaped charge particle jets [D]. Hefei: University of Science and Technology of China, 2012.
    [2] ZHOU Q, HU Q W, WANG B, et al. Fabrication and characterization of the Ni-Al energetic structural material with high energy density and mechanical properties [J]. Journal of Alloys and Compounds, 2020, 832: 154894. doi: 10.1016/j.jallcom.2020.154894
    [3] GUO H G, ZHENG Y F, YU Q B, et al. Penetration behavior of reactive liner shaped charge jet impacting thick steel plates [J]. International Journal of Impact Engineering, 2019, 126: 76–84. doi: 10.1016/j.ijimpeng.2018.12.005
    [4] 李必红, 李哲雨, 李尚杰,等. 活性粉末药型罩射孔弹穿孔性能试验研究 [J]. 爆破器材, 2020, 49(1): 45–48.

    LI B H, LI Z Y, LI S J, et al. Penetrating performance test of shaped charge with active powder liner [J]. Demolition Equipments and Materials, 2020, 49(1): 45–48.
    [5] 孙淼. Ni-Al和Cu-Ni-Al反应药型罩的反应性及侵彻性能研究[D]. 太原: 中北大学, 2019.

    SUN M. Reactivity and penetration performance Ni-Al and Cu-Ni-Al mixtures as shaped charge liner materials [D]. Taiyuan: North University of China, 2019.
    [6] 黄正祥. 聚能装药理论与实践[M]. 北京: 北京理工大学出版社, 2014: 65.

    HUANG Z X. Theory and practice of shaped charge [M]. Beijing: Beijing Institute of Technology Press, 2014: 65.
    [7] DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. Amsterdam: Elsevier, 2012.
    [8] WU X D, LI L X, LIU W H, et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting [J]. Materials Science and Engineering: A, 2018, 732: 91–98. doi: 10.1016/j.msea.2018.06.087
    [9] MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, 1994.
    [10] BORVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. doi: 10.1016/j.ijimpeng.2008.12.003
    [11] 尹志新, 马常祥, 李守新,等. 聚能射流穿甲后超高强度钢靶板的损伤特征及其机理 [J]. 金属学报, 2002, 38(11): 1210–1214. doi: 10.3321/j.issn:0412-1961.2002.11.015

    YIN Z X, MA C X, LI S X, et al. Characteristic and mechanism of damaging of ultra-high strength steel target penetrated by shaped charge jet [J]. Acta Metallurgica Sinica, 2002, 38(11): 1210–1214. doi: 10.3321/j.issn:0412-1961.2002.11.015
    [12] WANG H F, GUO H G, GENG B Q, et al. Application of PTFE/Al reactive materials for double-layered liner shaped charge [J]. Materials, 2019, 12(17): 2768.
    [13] LAMBERT D E. Re-visiting 1-D hypervelocity penetration [J]. International Journal of Impact Engineering, 2008, 35(12): 1631–1635. doi: 10.1016/j.ijimpeng.2008.07.073
    [14] GUO W Q, LIU J X, XIAO Y, et al. Comparison of penetration performance and penetration mechanism of W-Cu shaped charge liner against three kinds of target: pure copper, carbon steel and Ti-6Al-4V alloy [J]. International Journal of Refractory Metals & Hard Materials, 2016, 60: 147–153.
    [15] BAI X, LIU J X, LI S K, et al. Effect of interaction mechanism between jet and target on penetration performance of shaped charge liner [J]. Materials Science and Engineering: A, 2012, 553: 142–148. doi: 10.1016/j.msea.2012.06.003
    [16] ZHAO Z Y, LIU J X, GUO W Q, et al. Effect of Zn and Ni added in W-Cu alloy on penetration performance and penetration mechanism of shaped charge liner [J]. International Journal of Refractory Metals & Hard Materials, 2016, 54: 90–97.
    [17] BASSIM M N, BOAKYE-YIADOM S, BOLDUC M, et al. Microstructural evolution from shaped charge through steel plates [J]. Applied Mechanics and Materials, 2014, 566: 344–349. doi: 10.4028/www.scientific.net/AMM.566.344
    [18] 陈昊. 聚能金属射流形成及侵彻过程中的动态变形研究[D]. 南京: 南京理工大学, 2012.

    CHEN H. Research on dynamic deformation in porcess of jet formation and penetration [D]. Nanjing: Nanjing University of Science & Technology, 2012.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  3707
  • HTML全文浏览量:  1402
  • PDF下载量:  38
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-01-06

目录

    /

    返回文章
    返回