Rockburst Proneness Criterion Based on Energy Principle
-
摘要: 岩爆判据是岩爆研究中最关键的科学问题之一,也是预测岩爆发生与否的关键。首先基于能量原理,以岩石强度与整体破坏准则为基准,建立了岩体单元受压与受拉时的岩爆烈度分级评价系统;然后采用已有的经典岩爆判据和新提出的岩爆倾向性判据,对国内部分典型岩爆工程实例进行了准确性和适用性检验;最后以锦屏Ⅱ级水电站4#引水隧洞为依托,通过FISH语言编程对3DEC数值模拟软件进行了二次开发,对三维应力条件下深地下工程岩爆地质灾害孕育机制与演化规律进行了模拟分析。结果表明:该判据全面考虑了围岩单元体受力的各种状态,反映了岩爆孕育发生过程的完整性因素、力学因素、脆性因素与储能因素;针对无、轻微、中等及强烈岩爆4个级别,提出了3个分级阈值(2、11和110);基于能量原理的岩爆倾向性判据对典型岩爆案例进行预测评估,结果与岩爆发生实际情况基本一致,具有良好的有效性和工程适用性。研究成果可为准确预测深部地下工程岩爆的倾向性提供一种新的思路。Abstract: The study of rockburst criterion is one of the most critical scientific problems in the rockburst research, and it is also the key to predict the occurrence of rockburst. Firstly, based on energy principle, rock strength and overall failure criterion, the classification evaluation system of rockburst intensity of rock under compression and tension is established. Secondly, the accuracy and applicability of some typical rockburst engineering cases in China are tested by using the existing classical rockburst criterion and the rockburst proneness criterion proposed in this study. Finally, based on the No.4 diversion tunnel of Jinping Ⅱ hydropower station, the secondary development of 3DEC numerical simulation software is carried out by using FISH language programming, and the result analysis is carried out on the incubation mechanism and evolution law of rockburst geological disasters in deep underground engineering under three-dimensional stress conditions. The results show that the criterion comprehensively considers all kinds of stress state of surrounding rock unit, and reflects the integrity, mechanical, brittleness and energy storage factors in the process of rockburst initiation. Three grading thresholds (2, 11 and 110) are proposed for the four grades of no, weak, moderate, and intense rockburst. The rockburst proneness criterion based on energy principle is used to predict and evaluate the typical rockburst cases, the results of which are basically consistent with the actual situations of rockburst, and has good effectiveness and engineering applicability. The research results provide a new approach for accurately predicting the rockburst proneness of deep underground engineering.
-
Key words:
- rock mechanics /
- rockburst /
- rockburst proneness criterion /
- rockburst classification
-
No. L/m ${\sigma _i}$/MPa $\nu $ Kv σc/MPa σt/MPa ${\sigma _{\rm{1}}}$ ${\sigma _{\rm{2}}}$ ${\sigma _{\rm{3}}}$ TSE5 108 16.15 8.14 4.27 0.28 0.68 130.21 11.55 150 19.23 10.51 3.16 141.13 13.68 271–350 20.22 12.53 3.58 169.52 15.14 TSE6 500–550 40.57 24.12 12.36 0.28 0.68 192.15 18.86 350 23.65 10.87 4.02 175.65 17.26 500 35.86 21.44 15.61 184.27 18.34 No. L/m Level of
rockburstDeformation brittleness
coefficient methodStrength ratio method of
surrounding rockThis work Ku Rockburst proneness ${{{\sigma _{\rm{c}}}} / {{\sigma _{\max }}}}$ Rockburst proneness R Rockburst proneness TSE5 108 Weak 3.1 Weak 8.1 Weak 0.8 No 150 Moderate 2.7 Weak 7.3 Weak 2.7 Weak 271–350 Weak 2.7 Weak 8.4 Weak 1.5 No TSE6 500–550 Moderate 2.8 Weak 4.7 Weak 7.6 Weak 350 Weak 7.4 Weak 1.4 No 500 Moderate 5.1 Moderate 11.6 Moderate No. Engineering Buried depth/m Stress/MPa Kv ${\sigma _{\rm{1}}}$ ${\sigma _{\rm{2}}}$ ${\sigma _{\rm{3}}}$ ${\sigma _{\max }}$ ${\sigma _{\rm{c}}}$ 1 Jinping I 400 9.00 8.44 4.50 18–70 50–70 0.34–0.72 35.00 17.50 10.80 2 Jinping Ⅱ 1 200–
2 50038.00 32.40 19.00 55–108 110–120 0.76 71.00 67.50 35.50 3 Headrace tunnel for TianshengqiaoⅡ hydropower station 130–760 25.80 12.90 3.51 30 88.7 0.75 25.80 20.52 12.90 4 Headrace tunnel for Taipingyi hydropower station 400 31.40 15.70 10.80 62.6 130–180 0.75 5 Qinling Railway Tunnel 1600 20.00 18.75 10.00 105 95–130 0.75 40.00 37.50 20.00 6 Linglong Gold Mine, Shandong Province 1000 50.00 27.00 25.00 82–114 138–197 0.75 60.00 30.00 27.00 7 Erlang Mountain road 770 53.70 26.85 20.79 41.46 64.9 0.75 8 Dongguashan Copper Mine, Tongling 790–850 34.33 21.33 17.17 105.5 132.2 0.75 34.33 22.95 17.17 57.20 28.60 10.80 9 Underground caverns of Pubugou hydropower station 250–320 27.30 13.65 8.64 42–54 82.3–207.5 0.80 21.10 10.55 6.75 10 Diversion tunnel for Yuzixi class I hydropower station 250–600 45.00 22.50 16.20 90 170 0.80 30.00 15.00 6.75 11 Tai-Jin Expressway Cangling Tunnel 300–756 59.50 29.75 8.10 48.9 150 0.75 59.50 29.75 20.41 No. $\sigma{\rm{_t}} $/MPa E.Hoek Russenes Erlang Mountain road Gu-Tao This work Threshold Level of rockburst Level of rockburst Level of rockburst Threshold Level of rockburst Threshold Level of rockburst 1 5.0 0.36 Weak Moderate Weak 5.56 Weak 0.4 No 1.40 Intense Intense Intense 1.43 Intense 10.6 Weak 2 5.0–6.0 0.50 Moderate Moderate Moderate 2.89 Moderate 137.9 Intense 0.46 Weak Moderate Weak 1.55 Intense 569.9 Intense 3 3.7 0.34 Weak Weak Weak 3.44 Intense 23.8 Moderate 98.8 Moderate 4 9.4 0.35–0.48 Weak–
ModerateWeak–
ModerateWeak 4.14–5.73 Moderate–
Intense6.2 Weak 5 7.0 1.11 Intense Intense Intense 4.75–6.50 Weak–
Moderate7.7 Weak 0.81 Intense Intense Intense 2.38–3.25 Moderate 61.7 Moderate 6 7.0–10.0 0.59 Moderate Intense Moderate 2.76 Moderate 90.9 Moderate 0.42 Weak Moderate Weak 3.94 Moderate 31.2 Moderate 7 8.0 0.64 Moderate Intense Moderate 1.21 Intense 56.6 Moderate 8 16.4 0.80 Intense Intense Intense 3.85 Moderate 2.4 Weak 9 5.9 0.20–0.51 Weak–
ModerateWeak–
ModerateWeak–
Moderate3.01–7.60 Weak–
Moderate17.3 Moderate 0.26–0.66 Weak–
ModerateWeak–
ModerateWeak–
Moderate3.90–9.83 Weak–
Moderate8.1 Weak 10 11.3 0.53 Moderate Moderate Moderate 3.78 Moderate 12.5 Moderate 5.67 Weak 2.4 Weak 11 8.0 0.33 Weak Weak Moderate 2.52 Moderate 28.9 Moderate 68.3 Moderate 表 5 4#引水隧洞岩爆段地应力状态
Table 5. In-situ stress state of rockburst section of 4# headrace tunnel
Buried depth/m ${\sigma _x}/{\rm{MPa}}$ ${\sigma _y}/{\rm{MPa}}$ ${\sigma _z}/{\rm{MPa}}$ ${\tau _{xy}}/{\rm{MPa}}$ ${\tau _{yz}}/{\rm{MPa}}$ ${\tau _{zx}}/{\rm{MPa}}$ 1 900 −49.81 −51.68 −58.09 −15.00 −1.23 −7.17 表 6 岩体的物理力学参数
Table 6. Physical and mechanical parameters of rock
E/GPa $\nu $ cm/MPa cr/MPa $\varphi $0/(°) $\varphi $m/(°) $\psi $/(°) 27.62 0.256 34.36 9.87 29.93 39.93 29.20 -
[1] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673.FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673. [2] MA T H, TANG C A, TANG L X, et al. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station [J]. Tunnelling and Underground Space Technology, 2015, 49: 345–368. doi: 10.1016/j.tust.2015.04.016 [3] 魏新江, 陈涛涛, 王霄, 等. 岩爆灾害研究与进展 [J]. 现代隧道技术, 2020, 57(2): 1–12.WEI X J, CHEN T T, WANG X, et al. Progress in research of the rockburst hazard [J]. Modern Tunnelling Technology, 2020, 57(2): 1–12. [4] 冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控 [M]. 北京: 科学出版社, 2013.FENG X T, CHEN B R, ZHANG C Q, et al. Mechanism, warning and dynamic control of rockburst development processes [M]. Beijing: Science Press, 2013. [5] ROOHOLLAH S F, ABBAS T. Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques [J]. Engineering with Computers, 2018, 35(9): 659–675. [6] HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186. doi: 10.1016/S1365-1609(97)80069-X [7] RUSSNES B F. Analyses of rockburst in tunnels in valley sides [D]. Trondheim: Norwegian Institute of Technology, 1974. [8] JOHN C J, NEVILLE G W. Fundamentals of rock mechanics [J]. Science Paperbacks, 1979, 9(3): 251–252. [9] KIDYBIŃSKI A. Bursting liability indices of coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 295–304. [10] 张传庆, 卢景景, 陈珺, 等. 岩爆倾向性指标及其相互关系探讨 [J]. 岩土力学, 2017, 38(5): 1397–1404.ZHANG C Q, LU J J, CHEN J, et al. Discussion on rock burst proneness indexes and their relation [J]. Rock and Soil Mechanics, 2017, 38(5): 1397–1404. [11] BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support [J]. Rock Mechanics and Rock Engineering, 1974, 6(4): 189–236. [12] 徐林生, 王兰生. 二郎山公路隧道岩爆发生规律与岩爆预测研究 [J]. 岩土工程学报, 1999, 21(5): 569–572.XU L S, WANG L S. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road [J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569–572. [13] 谷明成, 何发亮, 陈成宗. 秦岭隧道岩爆的研究 [J]. 岩石力学与工程学报, 2002, 21(9): 1324–1329.GU M C, HE F L, CHEN C Z. Study on rockburst in Qinling tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1324–1329. [14] ZHANG S C, MA T H, TANG C A, et al. Microseismic monitoring and experimental study on mechanism of delayed rockburst in deep-buried tunnels [J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2771–2788. doi: 10.1007/s00603-020-02069-4 [15] 陈炳瑞, 冯夏庭, 肖亚勋, 等. 深埋隧洞TBM施工过程围岩损伤演化声发射试验 [J]. 岩石力学与工程学报, 2010, 29(8): 1562–1569.CHEN B R, FENG X T, XIAO Y X, et al. Acoustic emission test on damage evolution of surrounding rock in deep-buried tunnel during TBM excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1562–1569. [16] 吴其斌. 微重力方法在岩爆预测中的应用 [J]. 地球物理学进展, 1993, 8(3): 136–142.WU Q B. Application of microgravity method in rockburst prediction [J]. Progress in Geophysics, 1993, 8(3): 136–142. [17] ZHANG C Q, FENG X T, ZHOU H, et al. Case histories of four extremely intense rockbursts in deep tunnels [J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275–288. doi: 10.1007/s00603-011-0218-6 [18] 张艳博, 杨震, 姚旭龙, 等. 基于红外辐射时空演化的巷道岩爆实时预警方法实验研究 [J]. 采矿与安全工程学报, 2018, 35(2): 299–307.ZHANG Y B, YANG Z, YAO X L, et al. Experimental study on real-time early warning method of tunnel rock burst based on infrared radiation spatial and temporal evolutions [J]. Journal of Mining & Safety Engineering, 2018, 35(2): 299–307. [19] 吴枋胤, 何川, 汪波, 等. 基于应力判据法的拉林铁路岩爆烈度分级研究 [J/OL]. 西南交通大学学报.(2020–05–14)[2020–12–08]. https://read.cnki.net/web/Journal/Article/XNJT20200513004.html.WU F Y, HE C, WANG B, et al. Study on the classification of rockburst intensity of Lasa-Linzhi Railway based on stress criterion [J/OL]. Journal of Southwest Jiaotong University. (2020–05–14) [2020–12–08]. https://read.cnki.net/web/Journal/Article/XNJT20200513004.html. [20] 李子运, 吴光, 黄天柱, 等. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究 [J]. 岩石力学与工程学报, 2018, 37(3): 662–670.LI Z Y, WU G, HUANG T Z, et al. Variation of energy and criteria for strength failure of shale under traixial cyclic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 662–670. [21] 杨凡杰, 周辉, 卢景景, 等. 岩爆发生过程的能量判别指标 [J]. 岩石力学与工程学报, 2015, 34(Suppl 1): 2706–2714.YANG F J, ZHOU H, LU J J, et al. An enegry criterion in process of rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 1): 2706–2714. [22] 李夕兵, 宫凤强, 王少锋, 等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据 [J]. 岩石力学与工程学报, 2019, 38(4): 708–723.LI X B, GONG F Q, WANG S F, et al. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708–723. [23] GONG F Q, WANG Y L, LUO S. Rockburst proneness criteria for rock materials: review and new insights [J]. Journal of Central South University, 2020, 27(10): 2793–2821. doi: 10.1007/s11771-020-4511-y [24] KARCHEVSKY A L. Determination of the possibility of rock burst in a coal seam [J]. Journal of Applied and Industrial Mathematics, 2017, 11(4): 527–534. doi: 10.1134/S199047891704010X [25] COOK N G W. A note on rockbursts considered as a problem of stability [J]. Journal of the South African Institute of Mining and Metallugy, 1965, 65(8): 437–446. [26] RYDER J A. Excess shear stress in the assessment of geologically hazardous situations [J]. Journal of the South African Institute of Mining and Metallurgy, 1988, 88(1): 27–39. [27] MITRI H S, TANG B, SIMON R. FE modelling of mining-induced energy release and storage rates [J]. Journal of the South African Institute of Mining and Metallurgy, 1999, 99(2): 103–110. [28] WILES T D. Correlation between local energy release density observed bursting conditions at Creighton Mine [R]. Sudbury, Canada: Mines Research, 1998. [29] 苏国韶. 高地应力下大型地下洞室群稳定性分析与智能优化研究 [D]. 武汉: 中国科学院, 2006.SU G S. Study on stability analysis and intelligent optimization for large underground caverns under high geostress condition [D]. Wuhan: Graduate University of the Chinese Academy of Sciences, 2006. [30] 邱士利, 冯夏庭, 江权, 等. 深埋隧洞应变型岩爆倾向性评估的新数值指标研究 [J]. 岩石力学与工程学报, 2014, 33(10): 2007–2017.QIU S L, FENG X T, JIANG Q, et al. A novel numerical index for estimating strainburst vulnerability in deep tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 2007–2017. [31] BIENIAWSKI Z T. Mechanism of brittle fracture of rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(4): 405–430. [32] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010.XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks baded on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. [33] 许博, 谢和平, 涂扬举. 瀑布沟水电站地下厂房开挖过程中岩爆应力状态的数值模拟 [J]. 岩石力学与工程学报, 2007, 26(Suppl 1): 2894–2900.XU B, XIE H P, TU Y J. Numerical simulation of rockburst stress state during excavation of underground powerhouse of Pubugou Hydropower Station [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl 1): 2894–2900. [34] 郭建强, 赵青, 王军保, 等. 基于弹性应变能岩爆倾向性评价方法研究 [J]. 岩石力学与工程学报, 2015, 34(9): 1886–1893.GUO J Q, ZHAO Q, WANG J B, et al. Rockburst prediction based on elastic strain energy [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1886–1893. [35] 王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法 [J]. 岩石力学与工程学报, 1998, 17(5): 493–501.WANG Y H, LI W D, LI Q G, et al. Method of fuzzy comprehensive evaluations for rockburst prediction [J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 493–501. [36] ZHANG J J, FU B J, LI Z K, et al. Criterion and classification for strain mode rockbursts based on five-factor comprehensive method [M]//QIAN Q H, ZHOU Y X. Harmnonising rock engineering and the environment, Boca Raton: CRC Press, 2011: 562−563. [37] 尚彦军, 张镜剑, 傅冰骏. 应变型岩爆三要素分析及岩爆势表达 [J]. 岩石力学与工程学报, 2013, 32(8): 1520–1527.SHANG Y J, ZHANG J J, FU B J. Analyses of three parameters for strain mode rockburst and expression of rockburst potential [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1520–1527. [38] 中华人民共和国水利部. 工程岩体分级标准: GB/T 50218—2014 [S]. 北京: 中国计划出版社, 2014.Ministry of Water Resources of the People’s Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014 [S]. Beijing: China Planning Press, 2014. [39] 蔡美峰, 何满潮, 刘东燕. 岩石力学与工程 [M]. 2版. 北京: 科学出版社, 2013.CAI M F, HE M C, LIU D Y. Rock Mechanics and Engineering [M]. 2nd ed. Beijing: Science Press, 2013. [40] 周辉, 杨凡杰, 张传庆, 等. 岩爆与冲击地压数值模拟与评估预测方法 [M]. 北京: 科学出版社, 2015.ZHOU H, YANG F J, ZHANG C Q, et al. Methods for numerical simulation and evaluation of rock burst and rock burst [M]. Beijing: Science Press, 2015. [41] 骆正坤, 李新平, 孙吉主, 等. 深埋跨断层隧道爆破开挖动力响应规律研究 [J]. 爆破, 2020, 37(3): 56–62.LUO Z K, LI X P, SUN J Z, et al. Study on dynamic response law of blasting excavation of deep buried cross fault tunnel [J]. Blasting, 2020, 37(3): 56–62. [42] 周航, 陈仕阔, 张广泽, 等. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究 [J]. 工程地质学报, 2020, 28(6): 1419–1429.ZHOU H, CHEN S K, ZHANG G Z, et al. Efficiency coefficient method and ground stress field inversion for rockburst predicition in deep and long tunnel [J]. Journal of Engineering Geology, 2020, 28(6): 1419–1429. [43] 石崇, 褚卫江, 郑文棠. 块体离散元数值模拟技术及工程应用 [M]. 北京: 中国建筑工业出版社, 2016.SHI C, CHU W J, ZHENG W T. Block discrete element numerical simulation technology and engineering application [M]. Beijing: China Architecture and Building Press, 2016. [44] 冯夏庭, 张传庆, 陈炳瑞, 等. 岩爆孕育过程的动态调控 [J]. 岩石力学与工程学报, 2012, 31(10): 1983–1997.FENG X T, ZHANG C Q, CHEN B R, el al. Dynamical control of rockburst evolution process [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1983–1997.