轴向压缩下圆柱形动力锂离子电池的性能

李梦 柳小伟 张舒 宋辉 王根伟 王彬

李梦, 柳小伟, 张舒, 宋辉, 王根伟, 王彬. 轴向压缩下圆柱形动力锂离子电池的性能[J]. 高压物理学报, 2021, 35(3): 035302. doi: 10.11858/gywlxb.20200647
引用本文: 李梦, 柳小伟, 张舒, 宋辉, 王根伟, 王彬. 轴向压缩下圆柱形动力锂离子电池的性能[J]. 高压物理学报, 2021, 35(3): 035302. doi: 10.11858/gywlxb.20200647
LI Meng, LIU Xiaowei, ZHANG Shu, SONG Hui, WANG Genwei, WANG Bin. Performance of Cylindrical Power Lithium-Ion Battery under Axial Compression[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035302. doi: 10.11858/gywlxb.20200647
Citation: LI Meng, LIU Xiaowei, ZHANG Shu, SONG Hui, WANG Genwei, WANG Bin. Performance of Cylindrical Power Lithium-Ion Battery under Axial Compression[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035302. doi: 10.11858/gywlxb.20200647

轴向压缩下圆柱形动力锂离子电池的性能

doi: 10.11858/gywlxb.20200647
基金项目: 国家自然科学基金(11872265);山西省自然科学基金(201901D111087)
详细信息
    作者简介:

    李 梦(1994-),女,硕士研究生,主要从事动力电池安全性究. E-mail:2795997261@qq.com

    通讯作者:

    王根伟(1974-),男,博士,副教授,主要从事冲击动力学研究. E-mail:gwang@tyut.edu.cn

  • 中图分类号: O347

Performance of Cylindrical Power Lithium-Ion Battery under Axial Compression

  • 摘要: 动力电池的安全问题制约了电动汽车的推广和发展,轴向压缩是锂离子电池的一种重要的破坏工况。通过实验方法,研究了18650锂离子电池在轴向压缩载荷下的安全性能,探讨了荷电状态分别为60%、80%、100%时电池的载荷、电压、温度的变化特征,分析了轴向压缩载荷下电池的失效过程。研究表明:轴向压缩过程中电压均出现特有的台阶式下降,极限载荷和温度骤升几乎同时发生;电池正极的凹槽结构诱导电池在靠近正极的侧面破裂。对比轴向压缩实验和径向平板压缩实验发现,动力电池轴向压缩热失控程度弱于径向平板压缩。

     

  • 图  18650锂离子电池的CT图像

    Figure  1.  CT image of 18650 lithium-ion battery

    图  不同加载速度下100% SOC电池的载荷-位移曲线

    Figure  2.  Load-displacement curves of 100% SOC battery at different loading speeds

    图  100% SOC电池的载荷、电压、温度-位移曲线

    Figure  3.  Load-, voltage- and temperature-displacementcurves of the 100% SOC battery

    图  60%和80% SOC电池的载荷、电压、温度-位移曲线

    Figure  4.  Load-,voltage- and temperature-displacement curves of 60% and 80% SOC battery

    图  不同SOC电池的峰值力

    Figure  5.  Peak force of batteries with different SOCs

    图  不同SOC电池的最高温度

    Figure  6.  Maximum temperature of batterieswith different SOCs

    图  100% SOC电池的载荷、温度-位移曲线

    Figure  7.  Load-, temperature-displacementcurves of the 100% SOC battery

    图  轴向压缩过程中的电池及其红外成像(a)~(g)以及破坏后的电池实物(h)

    Figure  8.  Infrared images and photos of the battery during axial compression (a)–(g) and the battery after destruction (h)

    图  18650锂离子电池正极端(a)及CT图像(b)

    Figure  9.  Positive electrode of 18650 lithium-ion battery (a) and CT image (b)

  • [1] 闫建涛. 多国将传统燃油车禁售提上日程:能源替代竞争压力冲击石油行业 [J]. 国际石油经济, 2018, 26(1): 16–17. doi: 10.3969/j.issn.1004-7298.2018.01.006

    YAN J T. Many countries put the ban on the sale of traditional fuel vehicles on the agenda:the pressure of energy substitution and competition hits the oil industry [J]. International Petroleum Economics, 2018, 26(1): 16–17. doi: 10.3969/j.issn.1004-7298.2018.01.006
    [2] 国务院印发《打赢蓝天保卫战三年行动计划》 [J]. 现代城市研究, 2018(8): 131.

    The State Council issued《three-year action plan to fight air pollution》 [J]. Modern Urban Research, 2018(8): 131.
    [3] 王萌萌. 国务院办公厅印发《新能源汽车产业发展规划(2021-2035年)》 [EB/OL]. 新华网 (2020-11-02)[2020-12-03]. http://www.xinhuanet.com/politics/2020-11/02/c_1126688263.htm.
    [4] 王炬鹏. 全国私家车保有量首次突破2亿辆 新能源汽车保有量达381万辆 [EB/OL]. 中国经济网(2020-01-07)[2020-12-03]. http://www.ce.cn/xwzx/gnsz/gdxw/202001/07/t20200107_34064649.shtml.
    [5] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. doi: 10.1016/j.jpowsour.2014.05.078
    [6] ZHU J E, ZHANG X W, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression [J]. Journal of Power Sources, 2016, 336: 332–340. doi: 10.1016/j.jpowsour.2016.10.064
    [7] 杨威. 车用动力电池包底部碰撞安全性分析[D]. 广州: 华南理工大学, 2019.

    YANG W. Safety analysis of bottom crash of vehicle power battery pack [D]. Guangzhou: South China University of Technology, 2019.
    [8] XU J, LIU B H, HU D Y. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries [J]. Scientific Reports, 2016, 6: 21829. doi: 10.1038/srep21829
    [9] XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–189. doi: 10.1016/j.apenergy.2016.03.108
    [10] XU J, JIA Y, LIU B, et al. Coupling effect of state-of-health and state-of-charge on the mechanical integrity of lithium-ion batteries [J]. Experimental Mechanics, 2018, 58(4): 633–643. doi: 10.1007/s11340-018-0380-9
    [11] HAO W F, YUAN Z R, XU Y Z, et al. Damage analysis of cylindrical lithium-ion cells under three-points bending using acoustic emission [J]. Journal of Power Sources, 2019, 444: 227323. doi: 10.1016/j.jpowsour.2019.227323
    [12] DIXON B, MASON A, SAHRAEI E. Effects of electrolyte, loading rate and location of indentation on mechanical integrity of li-ion pouch cells [J]. Journal of Power Sources, 2018, 396: 412–420. doi: 10.1016/j.jpowsour.2018.06.042
    [13] GAO Z H, ZHANG X T, XIAO Y, et al. Influence of coupling of overcharge state and short-term cycle on the mechanical integrity behavior of 18650 Li-ion batteries subject to lateral compression [J]. International Journal of Hydrogen Energy, 2018, 43(10): 5261–5271. doi: 10.1016/j.ijhydene.2018.01.150
    [14] GAO Z H, ZHANG X T, XIAO Y, et al. Influence of low-temperature charge on the mechanical integrity behavior of 18650 lithium-ion battery cells subject to lateral compression [J]. Energies, 2019, 12(5): 797. doi: 10.3390/en12050797
    [15] 张晓婷. 圆柱型锂离子电池单体在径向挤压载荷下的力学响应特性研究[D]. 长春: 吉林大学, 2019.

    ZHANG X T. Study of the mechanical response characteristics of cylindrical lithium-ion battery cell subject to radial compression [D]. Changchun: Jinlin University, 2019.
    [16] KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells [J]. International Journal of Impact Engineering, 2017, 108: 205–216. doi: 10.1016/j.ijimpeng.2017.04.025
    [17] XIA Y, CHEN G H, ZHOU Q, et al. Failure behaviours of 100% SOC lithium-ion battery modules under different impact loading conditions [J]. Engineering Failure Analysis, 2017, 82: 149–160. doi: 10.1016/j.engfailanal.2017.09.003
    [18] ZHU J E, LUO H L, LI W, et al. Mechanism of strengthening of battery resistance under dynamic loading [J]. International Journal of Impact Engineering, 2019, 131: 78–84. doi: 10.1016/j.ijimpeng.2019.05.003
    [19] 黄睿. 轴向载荷下泡沫铝填充薄壁金属管吸能特性的研究[D]. 太原: 太原理工大学, 2015.

    HUANG R. Study on energy absorption properties of thin-walled metal tubes filled with aluminum foam under axial load [D]. Taiyuan: Taiyuan University of Technology, 2015.
    [20] ZHAO Y P. Suggestion of a new dimensionless number for dynamic plastic response of beams and plates [J]. Archive of Applied Mechanics (Ingenieur Archiv), 1998, 68(7/8): 524–538. doi: 10.1007/s004190050184
    [21] 范文杰, 薛鹏程, 王根伟, 等. 压缩载荷作用下锂离子电池的安全性能 [J]. 高压物理学报, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752

    FAN W J, XUE P C, WANG G W, et al. Safety performance of power lithium ion battery under compressive load [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752
  • 加载中
图(9)
计量
  • 文章访问数:  4084
  • HTML全文浏览量:  1474
  • PDF下载量:  29
出版历程
  • 收稿日期:  2020-12-03
  • 修回日期:  2020-12-24

目录

    /

    返回文章
    返回