半球头和平头试件的泰勒撞击

黄魏银 陈刚 李俊承 张方举

黄魏银, 陈刚, 李俊承, 张方举. 半球头和平头试件的泰勒撞击[J]. 高压物理学报, 2021, 35(3): 034204. doi: 10.11858/gywlxb.20200643
引用本文: 黄魏银, 陈刚, 李俊承, 张方举. 半球头和平头试件的泰勒撞击[J]. 高压物理学报, 2021, 35(3): 034204. doi: 10.11858/gywlxb.20200643
HUANG Weiyin, CHEN Gang, LI Juncheng, ZHANG Fangju. Hemispherical and Flat Head Cylindrical Specimen Taylor Impact[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034204. doi: 10.11858/gywlxb.20200643
Citation: HUANG Weiyin, CHEN Gang, LI Juncheng, ZHANG Fangju. Hemispherical and Flat Head Cylindrical Specimen Taylor Impact[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034204. doi: 10.11858/gywlxb.20200643

半球头和平头试件的泰勒撞击

doi: 10.11858/gywlxb.20200643
基金项目: 国家自然科学基金(11572299)
详细信息
    作者简介:

    黄魏银(1995-),男,硕士研究生,主要从事冲击动力学研究.E-mail:huangweiyin18@gscaep.ac.cn

    通讯作者:

    陈 刚(1971-),男,博士,研究员,主要从事冲击动力学研究. E-mail:chengang@caep.cn

  • 中图分类号: O347.1

Hemispherical and Flat Head Cylindrical Specimen Taylor Impact

  • 摘要: 为研究不同头型对泰勒(Taylor)撞击载荷的影响,在材料静动态力学性能实验和Taylor撞击实验的基础上进行数值模拟,分析试件在撞击过程中的接触力、速度和外形尺寸等参量的变化历程。结果表明:在相同的撞击速度下,半球头试件的塑性变形程度更大;半球头试件的撞击载荷上升沿变缓,载荷脉冲时间增长,而两种试件的载荷平台段幅值相当。根据实验和数值模拟结果,进一步分析了霍普金森杆测试Taylor撞击载荷历程的适用性。

     

  • 图  半球头和平头试件实物

    Figure  1.  Hemispherical head and flat head specimens

    图  3A21铝合金静、动态变形条件下的应力-应变曲线

    Figure  2.  Quasi-static and dynamic engineering stress-strain curve of 3A21 aluminum alloy

    图  不同撞速实验后两种试件的典型形貌

    Figure  3.  Typical morphology of two specimens after different impact velocity experiments

    图  两种形状试件初始外形和最终变形比较

    Figure  4.  The initial shape and the final dimensions of the two kinds of specimen

    图  两种形状试件的典型撞击载荷曲线

    Figure  5.  Typical impact load curves of the two shaped specimens

    图  有限元模型

    Figure  6.  Finite element models

    图  3A21材料的屈服应力${\sigma _{\rm{b}}}$随温度的变化[18]

    Figure  7.  Variation of 3A21 material strength ${\sigma _{\rm{b}}}$ with temperature[18]

    图  试件最终长度和最大直径的比较

    Figure  8.  Comparison of the final length andmaximum diameter of the specimen

    图  试件撞击靶杆的载荷曲线

    Figure  9.  Load curves of specimen hitting target bar

    图  10  试件长度和接触面直径随时间的变化

    Figure  10.  Variation of specimen length andcontact surface diameter with time

    图  11  沿轴线距撞击面不同位置的节点速度(150 m/s)

    Figure  11.  Node velocity at different positions along the axis from the impact plane (150 m/s)

    图  12  半球头试件的最终长度、接触面直径和最大直径

    Figure  12.  The final length, contact surface diameter and maximum diameter of the hemispherical head specimen

    图  13  半球头试件撞击靶杆的载荷曲线

    Figure  13.  Load curves of the hemispherical head specimen hitting target bar

    图  14  半球头试件长度和接触面直径随时间的变化历程

    Figure  14.  Change course of the hemispherical head specimenlength and contact surface diameter with time

    图  15  半球头试件沿轴线距撞击面不同距离节点的速度

    Figure  15.  Node velocity at different positions along the axis from the impact plane

    图  16  两种头型试件的最大等效塑性应变

    Figure  16.  The maximum effective plastic strain of specimens with two types of head

    图  17  撞击速度150 m/s时两种头型试件的载荷历程

    Figure  17.  Load history of specimens with two types of head under 150 m/s

    图  18  两种头型试件端面中心单元的应力三轴度

    Figure  18.  The stress triaxiality of the end face centerelement of the specimen with two types of head

    图  19  两种试件靶杆载荷实验与模拟结果比较

    Figure  19.  Comparison of the load test and simulation of target rod

    图  20  靶杆表面测得的接触力比较

    Figure  20.  Comparison of the contact force measured on the surface of the target rod

    图  21  不同脉宽载荷测得的脉冲信号

    Figure  21.  Pulse signals measured with different pulse width loads

    表  1  材料参数

    Table  1.   Material parameters

    Material$\;\rho $/(g·cm−3)E/GPa$\;\mu $$\dot \varepsilon_{\rm{s} }$/s−1cp/[J·(kg·℃)−1]A/MPa
    3A212.73700.320.00188090
    7A042.85720.31
    MaterialB/MPaCnmTm/℃Tt/℃
    3A212160.010.310.860025
    下载: 导出CSV
  • [1] FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. doi: 10.1016/j.ijimpeng.2004.03.005
    [2] TAYLOR G I. The use of flat-ended projectiles for determining dynamic yield stress I. theoretical considerations [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, 194(1038): 289–299. doi: 10.1098/rspa.1948.0081
    [3] LEE E H, TUPPER S J. Analysis of plastic deformation in a steel cylinder striking a rigid target [J]. Journal of Applied Mechanics, 1954, 21(1): 63–70.
    [4] HAWKYARD J B. A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations [J]. International Journal of Mechanical Sciences, 1969, 11(3): 313–333. doi: 10.1016/0020-7403(69)90049-6
    [5] 钱伟长. 穿甲力学[M]. 北京: 国防工业出版社, 1984.
    [6] JONES S E, GILLIS P P, FOSTER J C JR, et al. A one-dimensional, two-phase flow model for taylor impact specimens [J]. Journal of Engineering Materials and Technology, 1991, 113(2): 228–235. doi: 10.1115/1.2903397
    [7] JONES S E, MAUDLIN P J, FOSTER J C JR. An engineering analysis of plastic wave propagation in the Taylor test [J]. International Journal of Impact Engineering, 1997, 19(2): 95–106. doi: 10.1016/S0734-743X(96)00020-6
    [8] JONES S E, DRINKARD J A, RULE W K. An elementary theory for the Taylor impact test [J]. International Journal of Impact Engineering, 1998, 21(1/2): 1–13. doi: 10.1016/S0734-743X(97)00036-5
    [9] ZHANG W, XIAO X K, WEI G, et al. Evaluation of five fracture models in Taylor impact fracture [J]. AIP Conference Proceedings, 2012, 1426(1): 1125–1128. doi: 10.1063/1.3686477
    [10] ROHR I, NAHME H, THOMA K. Material characterization and constitutive modelling of ductile high strength steel for a wide range of strain rates [J]. International Journal of Impact Engineering, 2005, 31(4): 401–433. doi: 10.1016/j.ijimpeng.2004.02.005
    [11] KLEISER G, REVIL-BAUDARD B, PASILIAO C L. High strain-rate plastic deformation of molybdenum: experimental investigation, constitutive modeling and validation using impact tests [J]. International Journal of Impact Engineering, 2016, 96: 116–128. doi: 10.1016/j.ijimpeng.2016.05.019
    [12] ABED F, JANKOWIAK T, RUSINEK A. Verification of a Thermoviscoplastic constitutive relation for brass material using Taylor’s test [J]. Journal of Engineering Materials and Technology, 2015, 137(4): 041005. doi: 10.1115/1.4030804
    [13] MA S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems [J]. International Journal of Impact Engineering, 2009, 36(2): 272–282. doi: 10.1016/j.ijimpeng.2008.07.001
    [14] TURGUTLU A, AL-HASASNI S T S, AKYURT M. Impact deformation of polymeric projectiles [J]. International Journal of Impact Engineering, 1996, 18(2): 119–127. doi: 10.1016/0734-743X(95)00033-7
    [15] 胡文军. 聚合物弹丸的碰撞行为研究 [D]. 重庆: 重庆大学, 2008.

    HU W J. Study on impact behavior of polymeric projectiles [D]. Chongqing: Chongqing University, 2008.
    [16] LOPATNIKOV S L, GAMA B A, HAQUE M J, et al. Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment [J]. Composite Structures, 2003, 61(1/2): 61–71. doi: 10.1016/S0263-8223(03)00039-4
    [17] RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. doi: 10.1016/j.ijimpeng.2004.07.012
    [18] 《工程材料实用手册》编辑委员会. 工程材料实用手册: 第3卷-铝合金 镁合金[M]. 北京: 中国标准出版社, 2002.
    [19] 朱珏. 混凝土类材料冲击本构特性的SHPB技术及Lagrange反解法的研究[D]. 合肥: 中国科学技术大学, 2006.

    ZHU J. On SHPB Technique and Lagrangian analysis used for studying the impact response of concrete-like materials [D]. Hefei: University of Science and Technology of China, 2006.
    [20] 刘孝敏, 胡时胜. 大直径SHPB弥散效应的二维数值分析 [J]. 实验力学, 2000, 15(4): 371–376. doi: 10.3969/j.issn.1001-4888.2000.04.003

    LIU X M, HU S S. Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB [J]. Journal of Experimental Mechanics, 2000, 15(4): 371–376. doi: 10.3969/j.issn.1001-4888.2000.04.003
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  3988
  • HTML全文浏览量:  1228
  • PDF下载量:  30
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2020-12-18

目录

    /

    返回文章
    返回