花岗岩粗糙表面动摩擦形态演化

张磊 王文帅 苗春贺 单俊芳 王鹏飞 徐松林

张磊, 王文帅, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 花岗岩粗糙表面动摩擦形态演化[J]. 高压物理学报, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
引用本文: 张磊, 王文帅, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 花岗岩粗糙表面动摩擦形态演化[J]. 高压物理学报, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
ZHANG Lei, WANG Wenshuai, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Rough Surface Morphology of Granite Subjected to Dynamic Friction[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
Citation: ZHANG Lei, WANG Wenshuai, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Rough Surface Morphology of Granite Subjected to Dynamic Friction[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640

花岗岩粗糙表面动摩擦形态演化

doi: 10.11858/gywlxb.20200640
基金项目: 高压物理与地震科技联合实验室开放基金(2019HPPES01);国家自然科学基金(11672286,11872361);中石油与中科院重大战略合作项目(2015A-4812)
详细信息
    作者简介:

    张 磊(1991-),男,博士研究生,主要从事材料动态力学性能研究. E-mail:zl21@ustc.edu.cn

    通讯作者:

    徐松林(1971-),男,博士,研究员,博士生导师,主要从事冲击下材料的动态响应研究. E-mail:slxu99@ustc.edu.cn

  • 中图分类号: O341

Rough Surface Morphology of Granite Subjected to Dynamic Friction

  • 摘要: 冲击过程中岩石界面动摩擦特性对于地震滑移等现象的研究有重要意义。基于分离式霍普金森压杆(SHPB)杆束技术对含倾斜界面的花岗岩进行冲击实验,分别采用光学显微镜和台阶仪,观测较大视场(毫米尺度)和较小视场(亚毫米尺度)下花岗岩界面粗糙形态。结果表明:微动滑移条件下,表面仍非常粗糙,没有大的凸起,但是对于局部初始较平滑的表面,冲击后由于表面的摩擦作用变得粗糙,很难观察到大位移滑移时的光滑滑移面。采用斜条型有限子群表示,结合微界面相对滑移磨损扩散的控制方程,建立岩石界面粗糙形态动力学演化的描述方法。初步结果验证了此方法的可行性,但需要结合深入的实验观测进行完善。研究结果对界面动摩擦演化过程及其机制的认识具有良好的参考意义。

     

  • 图  三维粗糙表面形态[15]

    Figure  1.  3D plot of the surface[15]

    图  SHPB杆束实验装置

    Figure  2.  SHPB bundle bars device

    图  微动摩擦性能

    Figure  3.  Properties of microscale dynamic friction

    图  微动摩擦过程中20°界面x方向的位移场演化

    Figure  4.  Evolution of x-displacement field of 20° surface during microscale dynamic friction

    图  30°界面在光学显微镜下的表面形态

    Figure  5.  Surface morphology of 30° joint by microscope

    图  30°界面在光学显微镜下的局部摩擦形态

    Figure  6.  Local sliding morphology of 30° joint by microscope

    图  15°界面在台阶仪下的局部表面形态

    Figure  7.  Local surface morphology of 15° joint by stylus profiler

    图  30°界面在台阶仪下的局部表面形态

    Figure  8.  Local surface morphology of 30° joint by stylus profiler

    图  斜条型子群(a)与雁型排列子群(b)[21]

    Figure  9.  Oblique strip pattern (a) and echelon pattern (b)[21]

    图  10  应用斜条型子群拟合30°界面

    Figure  10.  Simulation surface of 30° joint by oblique strip pattern

    图  11  动摩擦过程界面形态演化

    Figure  11.  Simulated evolution of surface morphology during dynamic friction

  • [1] 徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 30101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 30101.
    [2] 单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究 [J]. 实验力学, 2020, 35(1): 41–57.

    SHAN J F, XU S L, ZHANG L, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Chinese Journal of Experimental Mechanics, 2020, 35(1): 41–57.
    [3] 徐松林, 郑文, 刘永贵, 等. 冲击下花岗岩界面动态摩擦特性实验研究 [J]. 高压物理学报, 2011, 25(3): 207–212. doi: 10.11858/gywlxb.2011.03.003

    XU S L, ZHENG W, LIU Y G, et al. Experimental investigation on interface dynamic friction of granite under combined pressure and shear impact loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 207–212. doi: 10.11858/gywlxb.2011.03.003
    [4] 张磊, 徐松林, 施春英. 应用杆束系统研究水泥砂浆节理面的压剪动特性 [J]. 实验力学, 2016, 31(2): 175–185. doi: 10.7520/1001-4888-15-220

    ZHANG L, XU S L, SHI C Y. On the dynamic c ompression-shear characteristics of cement mortar joint surface based on a bunched bar system [J]. Chinese Journal of Experimental Mechanics, 2016, 31(2): 175–185. doi: 10.7520/1001-4888-15-220
    [5] BEN-DAVID O, RUBINSTEIN S M, FINEBERG J. Slip-stick and the evolution of frictional strength [J]. Nature, 2010, 463: 76–79. doi: 10.1038/nature08676
    [6] BEN-DAVID O, FINEBERG J. Static friction coefficient is not a material constant [J]. Physical Review Letters, 2011, 106(25): 254301. doi: 10.1103/PhysRevLett.106.254301
    [7] DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471: 494–497. doi: 10.1038/nature09838
    [8] RUBINO V, ROSAKIS A J, LAPUSTA N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes [J]. Nature Communication, 2017, 8: 15991. doi: 10.1038/ncomms15991
    [9] PASSELEGUE F X, SCHUBNEL A, NIELSEN S, et al. From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks [J]. Science, 2013, 340(6137): 1208–1211. doi: 10.1126/science.1235637
    [10] RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction [J]. Nature, 2004, 430: 1005–1009. doi: 10.1038/nature02830
    [11] RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding [J]. Physical Review Letters, 2007, 98: 226103. doi: 10.1103/PhysRevLett.98.226103
    [12] 许志倩, 闫相祯, 杨秀娟, 等. 随机抽样在粗糙表面接触力学行为分析中的应用 [J]. 西安交通大学学报, 2012, 46(5): 102–108.

    XU Z Q, YAN X Z, YANG X J, et al. Contact behavior analysis for rough surfaces with random sampling [J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 102–108.
    [13] TATONE B S, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials [J]. Review of Scientific Instruments, 2009, 80: 125110. doi: 10.1063/1.3266964
    [14] TATONE B S. Investigating the evolution of rock discontinuity asperity degradation and void space morphology under direct shear [D]. Toronto: University of Toronto, 2014.
    [15] HUANG J Y, XU S L, HU S S. Numerical investigations of the dynamic shear behavior of rough rock joints [J]. Rock Mechanics and Rock Engineering, 2014, 47: 1727–1743. doi: 10.1007/s00603-013-0502-8
    [16] 张磊. 冲击载荷下节理面动摩擦特性研究 [D]. 合肥: 中国科学技术大学, 2016.

    ZHANG L. Study on dynamic frictional properties of joint plane under impact load [D]. Hefei: University of Science and Technology of Science, 2016.
    [17] IKEDA K, MUROTA K. Imperfect bifurcation in structures and materials [M]. 3rd ed. Cham, Switzerland: Springer Natural Switzerland AG, 2019: 201−291.
    [18] IKEDA K, MURAKAMI S, SAIKI I, et al. Image simulation of uniform materials subjected to recursive bifurcation [J]. International Journal of Engineering Science, 2001, 39: 1963–1999. doi: 10.1016/S0020-7225(01)00038-6
    [19] 徐松林, 吴文, 白世伟, 等. 三轴压缩大理岩局部化变形的实验研究及其分岔行为 [J]. 岩土工程学报, 2001, 23(3): 296–301. doi: 10.3321/j.issn:1000-4548.2001.03.008

    XU S L, WU W, BAI S W, et al. Experimental studies of localization and bifurcation behaviors of a marble under triaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 296–301. doi: 10.3321/j.issn:1000-4548.2001.03.008
    [20] 徐松林, 吴文, 张奇华, 等. 大理岩有限变形分岔分析 [J]. 岩土工程学报, 2002, 24(1): 42–46. doi: 10.3321/j.issn:1000-4548.2002.01.009

    XU S L, WU W, ZHANG Q H, et al. Bifurcation analyses of finite/large deformation for a marble [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 42–46. doi: 10.3321/j.issn:1000-4548.2002.01.009
    [21] 徐松林, 吴文, 张华, 等. 直剪条件下大理岩局部化变形研究 [J]. 岩石力学与工程学报, 2002, 21(6): 766–771. doi: 10.3321/j.issn:1000-6915.2002.06.002

    XU S L, WU W, ZHANG H, et al. Testing study on localization of a marble under direct shear [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 766–771. doi: 10.3321/j.issn:1000-6915.2002.06.002
    [22] LEE D, TRIANTAFYLLIDIS N, BARBER J R, et al. Surface instability of an elastic half space with material properties varying with depth [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 858–868. doi: 10.1016/j.jmps.2007.06.010
    [23] 周李姜. 动态加载下脆性材料非均匀变形演化研究 [D]. 合肥: 中国科学技术大学, 2018.

    ZHOU L J. Evolution of heterogeneous deformation in brittle materials under dynamic loading [D]. Hefei: University of Science and Technology of Science, 2018.
    [24] JIANG H B, XU S L, SHAN J F, et al. Dynamic breakage of porous hexagonal boron nitride ceramics subjected to impact loading [J]. Powder Technology, 2019, 353: 359–371. doi: 10.1016/j.powtec.2019.05.028
  • 加载中
图(11)
计量
  • 文章访问数:  3960
  • HTML全文浏览量:  1392
  • PDF下载量:  25
出版历程
  • 收稿日期:  2020-11-18
  • 修回日期:  2020-12-16

目录

    /

    返回文章
    返回