钽靶板在冲击下层裂过程的数值模拟

王云天 曾祥国 陈华燕 杨鑫 王放 祁忠鹏

王云天, 曾祥国, 陈华燕, 杨鑫, 王放, 祁忠鹏. 钽靶板在冲击下层裂过程的数值模拟[J]. 高压物理学报, 2021, 35(2): 024203. doi: 10.11858/gywlxb.20200634
引用本文: 王云天, 曾祥国, 陈华燕, 杨鑫, 王放, 祁忠鹏. 钽靶板在冲击下层裂过程的数值模拟[J]. 高压物理学报, 2021, 35(2): 024203. doi: 10.11858/gywlxb.20200634
WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Numerical Simulation of Spalling Process of Tantalum Target under Impacts[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024203. doi: 10.11858/gywlxb.20200634
Citation: WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Numerical Simulation of Spalling Process of Tantalum Target under Impacts[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024203. doi: 10.11858/gywlxb.20200634

钽靶板在冲击下层裂过程的数值模拟

doi: 10.11858/gywlxb.20200634
基金项目: 北京应用物理与计算数学研究所计算物理重点实验室基金重点项目(Hxo2020-74)
详细信息
    作者简介:

    王云天(1989-),男,博士研究生,主要从事冲击动力学研究. E-mail:iswangyt@163.com

    通讯作者:

    曾祥国(1960-),男,博士,教授,主要从事冲击动力学研究. E-mail:xiangguozeng@scu.edu.cn

  • 中图分类号: O382.3

Numerical Simulation of Spalling Process of Tantalum Target under Impacts

  • 摘要: 对平面冲击加载下延性金属钽的层裂行为开展了数值模拟研究。利用AUTODYN软件中的Lagrange与SPH求解模块,考察了3种本构模型Johnson-Cook、Steinberg-Cochran-Guinan与Zerilli-Armstrong的模拟结果,结合实验数据对模拟结果进行了验证;在此基础上,通过改变撞击速度与飞片厚度,获得了不同应变率下的自由面速度曲线,分析了不同应变率下的层裂特性。结果表明:在2.31×104~5.40×104 s−1应变率范围内,SPH求解器结合Steinberg-Cochran-Guinan本构模型的结果与实验数据具有较好的一致性;金属钽的层裂强度随拉伸应变率的增加而增大,在对数坐标系下近似呈线性关系;不同层裂强度计算方法得到的结果差异可达8%;随着拉伸应变率的增加,自由面速度回跳速率随之增长。最后,对自由面速度曲线中的特征参量的物理意义进行了解读。

     

  • 图  平板撞击实验原理及自由面速度曲线示意图

    Figure  1.  Theoretical illustration of the flat plate impact test and the schematic diagram of the free surface velocity curves

    图  306 m/s撞击速度下平板撞击模型与模拟结果

    Figure  2.  Configuration of the plate impact simulations and simulation results at 306 m/s

    图  不同模型的自由面速度曲线与实验数据[43]的对比(撞击速度306 m/s)

    Figure  3.  Comparison of free surface velocity profiles between different simulations andexperiment data[43] (impact velocity 306 m/s)

    图  不同速度下SCG-SPH模型模拟结果与实验数据对比

    Figure  4.  Comparison of SCG-SPH model simulation results and experimental data with different velocities

    图  数值模拟得到的不同加载情况下的自由面速度曲线

    Figure  5.  Numerical simulation of free surface velocity profiles with different loading conditions

    图  层裂强度与拉伸应变率的关系

    Figure  6.  Relationship between spall strength and tensile strain rate

    图  对数坐标下层裂强度与拉伸应变率的关系

    Figure  7.  Relationship between spall strength andtensile strain rate in logarithmic coordinates

    图  层裂强度与回跳速率的关系

    Figure  8.  Relationship between spall strength and bounce rate

    图  不同冲击压力下Hugoniot弹性极限

    Figure  9.  Hugoniot elastic limit under different impact pressures

    图  10  自由面速度曲线第一个极小值之后的速度曲线

    Figure  10.  Free surface velocity profiles afterthe first minimal speed

    图  11  应变率对钽样品回跳速率的影响

    Figure  11.  Influence of strain rate on bounce rate of tantalum samples

    表  1  JC模型参数[27]

    Table  1.   Parameters of Johnson-Cook model[27]

    MaterialA/MPaB/MPanCm
    Tantalum1421640.310.0570.88
    下载: 导出CSV

    表  2  ZA模型参数[22]

    Table  2.   Parameters of Zerilli-Armstrong model[22]

    MaterialC1/MPak1/(MPa·mm1/2)C2/MPaC3/(10−3 K−1)C4/(10−3 K−1)C5/MPan
    Tantalum1 125101785.350.3273100.44
    下载: 导出CSV

    表  3  SCG模型参数[21]

    Table  3.   Parameters of Steinberg-Cochran-Guinan model[21]

    MaterialG0/MPaY0/GPaYmax/GPa βn$G{_p}^{'}$$G{_T}^{'}/(\rm{MPa\text{·}K}{^{-1} } )$$T {\rm{_m}}/\rm{K} $
    Tantalum690.771.10100.11.005−8.974 340
    下载: 导出CSV

    表  4  Mie-Grüneisen状态方程参数[31]

    Table  4.   Parameters of Mie-Grüneisen equation of state[31]

    Material$\;\rho $0/(kg·m−3)C0/(m·s−1)S1$\gamma $
    Tantalum16 6903 3401.201.67
    下载: 导出CSV

    表  5  验证模型参数设置

    Table  5.   Parameter settings of simulation validation cases

    No.df/mmds/mmDs/mmv/(m·s−1)ModelModule
    V-013.004.9550.00306JCLagrange
    V-023.004.9550.00306JCSPH
    V-033.004.9550.00306ZALagrange
    V-043.004.9550.00306ZASPH
    V-053.004.9550.00306SCGLagrange
    V-063.004.9550.00306SCGSPH
    下载: 导出CSV

    表  6  层裂模型参数与结果

    Table  6.   Parameters of plate impact simulations and results

    No.df/mmv/(m·s−1)ps/GPa$\dot{\varepsilon } $/(104 s−1)${\sigma}{_{\rm{ {spall} } } } $/GPaumax/(m·s−1)${\dot{\varepsilon } }{_{\rm{ {r} } }}$/(104 s−1)
    S-012.003068.845.40 4.92304.123.57
    S-022.002507.054.694.70242.033.25
    S-033.0041012.253.924.14405.612.32
    S-043.003068.843.283.97305.621.74
    S-053.002106.192.683.71208.751.69
    S-064.003068.842.313.34298.191.34
    下载: 导出CSV

    表  7  不同计算层裂强度的公式得到的数据对比

    Table  7.   Comparison of data obtained by different formulas for calculating the fracture strength

    No.df/mmds/mmDs/mmv/(m·s−1)${\sigma }{_{\rm{ {spall} }}}$/GPa${\sigma }{_{\rm{ {m1} } }}$/GPa${\sigma }{_{\rm{ {m2} } }}$/GPa
    S-012.004.9550.003064.925.255.36
    S-022.004.9550.002504.715.025.32
    S-033.004.9550.004104.134.404.48
    S-043.004.9550.003063.974.234.32
    S-053.004.9550.002103.723.964.07
    S-064.004.9550.003063.353.573.58
    下载: 导出CSV

    表  8  不同撞击速度下层裂片厚度

    Table  8.   Spall scab thickness at different impact velocities

    No.df/mmds/mmv/(m·s−1)dsp/mm$\delta $/%
    S-012.004.953061.962.0
    S-022.004.952501.924.0
    S-033.004.954103.052.7
    S-043.004.953062.893.4
    S-053.004.952102.922.7
    S-064.004.953063.912.3
    下载: 导出CSV

    表  9  不同撞击速度下的Hugoniot弹性极限

    Table  9.   Hugoniot elastic limit at different impact velocities

    No.v/(m·s−1)ps/GPa$\sigma{_{\rm{HEL} }}$/GPa
    S-013068.841.96
    S-022507.051.89
    S-0341012.252.09
    S-043068.841.95
    S-052106.191.77
    S-063068.841.95
    下载: 导出CSV
  • [1] 裴晓阳, 彭辉, 贺红亮, 等. 延性金属层裂自由面速度曲线物理涵义解读 [J]. 物理学报, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601

    PEI X Y, PENG H, HE H L, et al. Discussion on the physical meaning of free surface velocity curve in ductile spallation [J]. Acta Physica Sinica, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [2] CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253–388.
    [3] ANTOUN T H, CURRAN D R, RAZORENOV S V, et al. Spall fracture [M]. New York: Springer-Verlag Press, 2003: 93–94.
    [4] CHEN D N, FAN C L, XIE S G, et al. Study on constitutive relations and spall models for oxygen-free high-conductivity copper under planar shock tests [J]. Journal of Applied Physics, 2007, 101(6): 063532. doi: 10.1063/1.2711405
    [5] MEYERS M A, AIMONE C T. Dynamic fracture (spalling) of metals [J]. Progress in Materials Science, 1983, 28(1): 1–96. doi: 10.1016/0079-6425(83)90003-8
    [6] 陈永涛, 唐小军, 李庆忠, 等. 纯铁材料的冲击相变与“反常”层裂 [J]. 爆炸与冲击, 2009, 29(6): 637–641. doi: 10.3321/j.issn:1001-1455.2009.06.014

    CHEN Y T, TANG X J, LI Q Z, et al. Phase transition and abnormal spallation in pure iron [J]. Explosion and Shock Waves, 2009, 29(6): 637–641. doi: 10.3321/j.issn:1001-1455.2009.06.014
    [7] THOMAS S A, HAWKINS M, MATTHES M K, et al. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel [J]. Journal of Applied Physics, 2018, 123(17): 175902. doi: 10.1063/1.5019484
    [8] 翟少栋, 李英华, 彭建祥, 等. 平面碰撞与强激光加载下金属铝的层裂行为 [J]. 爆炸与冲击, 2016, 36(6): 767–773. doi: 10.11883/1001-1455(2016)06-0767-07

    ZHAI S D, LI Y H, PENG J X, et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings [J]. Explosion and Shock Waves, 2016, 36(6): 767–773. doi: 10.11883/1001-1455(2016)06-0767-07
    [9] KOLLER D D, HIXSON R S, GRAY G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98(10): 103518. doi: 10.1063/1.2128493
    [10] 张林, 蔡灵仓, 王悟, 等. 钽在冲击载荷下的动态力学特性 [J]. 高压物理学报, 2001, 15(4): 265–270. doi: 10.3969/j.issn.1000-5773.2001.04.005

    ZHANG L, CAI L C, WANG W, et al. The dynamic mechanic characteristics of Tantalum under shock loading [J]. Chinese Journal of High Pressure Physic, 2001, 15(4): 265–270. doi: 10.3969/j.issn.1000-5773.2001.04.005
    [11] 张凤国, 刘军, 王裴, 等. 三角波强加载下延性金属多次层裂破坏问题 [J]. 爆炸与冲击, 2018, 38(3): 659–664.

    ZHANG F G, LIU J, WANG P, et al. Multi-spall in ductile metal under triangular impulse loading [J]. Explosion and Shock Waves, 2018, 38(3): 659–664.
    [12] 种涛, 唐志平, 谭福利, 等. 纯铁相变和层裂损伤的数值模拟 [J]. 高压物理学报, 2018, 32(1): 014102.

    CHONG T, TANG Z P, TAN F L, et al. Numerical simulation of phase transition and spall of iron [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014102.
    [13] 贺年丰, 任国武, 陈永涛, 等. 爆轰加载下金属锡层裂破碎数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 042101.

    HE N F, REN G W, CHEN Y T, et al. Numerical simulation on spallation and fragmentation of tin under explosive loading [J]. Explosion and Shock Waves, 2019, 39(4): 042101.
    [14] 席涛, 范伟, 储根柏, 等. 超高应变率载荷下铜材料层裂特性研究 [J]. 物理学报, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202

    XI T, FAN W, CHU G B, et al. Spall behavior of copper under ultra-high strain rate loading [J]. Acta Physica Sinica, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
    [15] GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. doi: 10.1016/j.ijimpeng.2013.10.010
    [16] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. doi: 10.1007/s11831-010-9040-7
    [17] LIBERSKY L D, PETSCHEK A G. Smooth particle hydrodynamics with strength of materials [M]//TREASE H E, FRITTS M F, CROWLEY W P. Advances in the free-Lagrange method: Springer-Verlag Berlin Heidelberg GmbH, 1991: 248–257.
    [18] 徐志宏, 汤文辉, 罗永. 光滑粒子模拟方法在超高速碰撞现象中的应用 [J]. 爆炸与冲击, 2006, 26(1): 53–58. doi: 10.3321/j.issn:1001-1455.2006.01.009

    XU Z H, TANG W H, LUO Y. Applications of the smoothed particle hydrodynamics method to hypervelocity impact simulations [J]. Explosion and Shock Waves, 2006, 26(1): 53–58. doi: 10.3321/j.issn:1001-1455.2006.01.009
    [19] ZHOU C E, LIU G R, LOU K Y. Three-dimensional penetration simulation using smoothed particle hydrodynamics [J]. International Journal of Computational Methods, 2007, 4(4): 671–691. doi: 10.1142/S0219876207000972
    [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [21] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [22] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
    [23] 王泽平, 恽寿榕. 延性材料层裂的数值模拟 [J]. 爆炸与冲击, 1991, 11(1): 20–25.

    WANG Z P, YUN S R. Numerical calculations of spallation in ductile solids [J]. Explosion and Shock Waves, 1991, 11(1): 20–25.
    [24] EAKINS D E, THADHANI N N. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states [J]. Journal of Applied Physics, 2006, 100(7): 073503. doi: 10.1063/1.2354326
    [25] TENG X, WIERZBICKI T. Evaluation of six fracture models in high velocity perforation [J]. Engineering Fracture Mechanics, 2006, 73(12): 1653–1678. doi: 10.1016/j.engfracmech.2006.01.009
    [26] WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. doi: 10.1016/j.ijimpeng.2013.04.010
    [27] 樊雪飞, 李伟兵, 王晓鸣, 等. 药型罩材料性能参数对双模毁伤元成型的影响 [J]. 含能材料, 2017, 25(11): 888–895. doi: 10.11943/j.issn.1006-9941.2017.11.002

    FAN X F, LI W B, WANG X M, et al. Effects of liner’s material properties on the forming of dual mode damage elements [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 888–895. doi: 10.11943/j.issn.1006-9941.2017.11.002
    [28] MIRZAIE T, MIRZADEH H, CABRERA J M. A simple Zerilli-Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels [J]. Mechanics of Materials, 2016, 94: 38–45. doi: 10.1016/j.mechmat.2015.11.013
    [29] ABED F H, VOYIADJIS G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J]. Acta Mechanica, 2005, 175(1/2/3/4): 1–18.
    [30] PRESTON D L, TONKS D L, WALLACE D C. Model of plastic deformation for extreme loading conditions [J]. Journal of Applied Physics, 2003, 93(1): 211–220. doi: 10.1063/1.1524706
    [31] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980: 136.
    [32] RINEHART J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics, 1951, 22(5): 555–560. doi: 10.1063/1.1700005
    [33] GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [34] 邸德宁, 陈小伟. 碎片云SPH方法数值模拟中的材料失效模型 [J]. 爆炸与冲击, 2018, 38(5): 948–956. doi: 10.11883/bzycj-2017-0328

    DI D N, CHEN X W. Material failure models in SPH simulation of debris cloud [J]. Explosion and Shock Waves, 2018, 38(5): 948–956. doi: 10.11883/bzycj-2017-0328
    [35] NOVIKOV S A. Spall strength of materials under shock load [J]. Journal of Applied Mechanics and Technical Physics, 1967, 3: 109–120.
    [36] DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2 × 106 s−1 [J]. Journal of Applied Physics, 2008, 104(1): 013526. doi: 10.1063/1.2949276
    [37] THAM C Y. Reinforced concrete perforation and penetration simulation using AUTODYN-3D [J]. Finite Elements in Analysis and Design, 2005, 41(14): 1401–1410. doi: 10.1016/j.finel.2004.08.003
    [38] 石永相, 施冬梅, 李文钊, 等. ZrCuNiAlAg块体非晶合金JH-2模型研究 [J]. 爆炸与冲击, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221

    SHI Y X, SHI D M, LI W Z, YU Z T, et al. Study on JH-2 model of the ZrCuNiAlAg bulk amorphous alloy [J]. Explosion and Shock Waves, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221
    [39] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. doi: 10.11883/bzycj-2019-0029

    CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. doi: 10.11883/bzycj-2019-0029
    [40] 王韫泽, 王树山, 魏平亮, 等. 穿甲弹异物阻滞膛炸机理数值仿真分析 [J]. 兵工学报, 2018, 39(5): 859–866. doi: 10.3969/j.issn.1000-1093.2018.05.004

    WANG Y Z, WANG S S, WEI P L, et al. Numerical simulation and analysis of bore premature of armor piercer caused by foreign matter obstruction [J]. Acta Armamentarii, 2018, 39(5): 859–866. doi: 10.3969/j.issn.1000-1093.2018.05.004
    [41] HUANG H, JIAO Q J, NIE J X, et al. Numerical modeling of underwater explosion by one-dimensional ANSYS-AUTODYN [J]. Journal of Energetic Materials, 2011, 29(4): 292–325. doi: 10.1080/07370652.2010.527898
    [42] 孙晓旺, 章杰, 王肖钧, 等. 应力波数值计算中的SPH方法 [J]. 爆炸与冲击, 2017, 37(1): 21–26. doi: 10.11883/1001-1455(2017)01-0021-06

    SUN X W, ZHANG J, WANG X J, et al. Application of SPH in stress wave simulation [J]. Explosion and Shock Waves, 2017, 37(1): 21–26. doi: 10.11883/1001-1455(2017)01-0021-06
    [43] CZARNOTA C, JACQUES N, MERCIER S, et al. Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum [J]. Journal of the Mechanics and Physics of Solid, 2008, 56(4): 1624–1650. doi: 10.1016/j.jmps.2007.07.017
    [44] ARMSTRONG R W, WALLEY S M. High strain rate properties of metals and alloys [J]. International Materials Reviews, 2008, 53(3): 105–128. doi: 10.1179/174328008X277795
    [45] 张林. 延性材料冲击响应: 动态损伤与断裂、结构相变的新模型 [D]. 绵阳: 中国工程物理研究院, 2005.
    [46] STEPANOV G V, ROMANCHENKO V I, ASTANIN V V. Experimental determination of failure stresses under spallation in elastic-plastic waves [J]. Probl Strength, 1977, 8: 96–99.
    [47] KANEL G I. Dynamic strength of materials [J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(11): 1011–1020.
    [48] KANEL G I, FORTOV V E, RAZORENOV S V. Shock-wave phenomena and the properties of condensed matter [M]. New York: Springer, 2004.
    [49] KANEL G I, RAZORENOV S V, BOGATCH A, et al. Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature [J]. International Journal of Impact Engineering, 1997, 20(6/7/8/9/10): 467–478.
  • 加载中
图(11) / 表(9)
计量
  • 文章访问数:  4428
  • HTML全文浏览量:  1654
  • PDF下载量:  47
出版历程
  • 收稿日期:  2020-11-06
  • 修回日期:  2020-12-02

目录

    /

    返回文章
    返回