双石英玻璃珠的低速冲击破碎行为

简世豪 苗春贺 张磊 单俊芳 王鹏飞 徐松林

简世豪, 苗春贺, 张磊, 单俊芳, 王鹏飞, 徐松林. 双石英玻璃珠的低速冲击破碎行为[J]. 高压物理学报, 2021, 35(2): 024202. doi: 10.11858/gywlxb.20200629
引用本文: 简世豪, 苗春贺, 张磊, 单俊芳, 王鹏飞, 徐松林. 双石英玻璃珠的低速冲击破碎行为[J]. 高压物理学报, 2021, 35(2): 024202. doi: 10.11858/gywlxb.20200629
JIAN Shihao, MIAO Chunhe, ZHANG Lei, SHAN Junfang, WANG Pengfei, XU Songlin. Fragmentation of Double Quartz Glass Spheres Subjected to Lower-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024202. doi: 10.11858/gywlxb.20200629
Citation: JIAN Shihao, MIAO Chunhe, ZHANG Lei, SHAN Junfang, WANG Pengfei, XU Songlin. Fragmentation of Double Quartz Glass Spheres Subjected to Lower-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024202. doi: 10.11858/gywlxb.20200629

双石英玻璃珠的低速冲击破碎行为

doi: 10.11858/gywlxb.20200629
基金项目: 高压物理与地震科技联合实验室开放基金(2019HPPES01);国家自然科学基金(11672286,11872361,11602267)
详细信息
    作者简介:

    简世豪(1995-),男,硕士研究生,主要从事颗粒破碎研究. E-mail:285390814@qq.com

    通讯作者:

    徐松林(1971-),男,博士,研究员,博士生导师,主要从事材料冲击下的动态响应研究.E-mail:slxu99@ustc.edu.cn

  • 中图分类号: O346.13

Fragmentation of Double Quartz Glass Spheres Subjected to Lower-Velocity Impact

  • 摘要: 应用分离式霍普金森压杆(SHPB)加载装置,对直径为8.30、11.68、15.42、17.50 mm的石英玻璃珠开展了冲击速度为5.6~11.5 m/s的双玻璃珠系动态破碎实验。利用高速摄影技术记录双玻璃珠在动态冲击下的破碎过程,结合透射载荷-位移曲线以及破碎产物的粒度分析结果,探讨了石英玻璃双颗粒在冲击下的破坏机制。结果表明:由于双颗粒系中载荷的不均匀特性,两个玻璃珠的破碎具有时序特征,随冲击速度的增加而改变;玻璃珠的冲击破碎源于接触部位局部的Hertz裂纹扩张和裂纹系的扩散,而不是通常认为的贯穿性的斜裂纹体系;瞬态红外测温揭示了玻璃珠冲击破碎的两种主要机制和临界破碎扩散阻力的存在。研究结果对认识脆性颗粒介质的动态破坏机制具有良好的参考意义。

     

  • 图  SHPB实验装置

    Figure  1.  Schematic diagram of the modified SHPB device

    图  结合红外测温的SHPB实验装置

    Figure  2.  Modified SHPB with ITMS

    图  透射载荷-位移关系曲线

    Figure  3.  Transmitted load vs. displacement curves

    图  破碎产物质量分布曲线

    Figure  4.  Mass distribution of fragmentation products

    图  细颗粒产物的体积分布曲线

    Figure  5.  Volume distribution of finer particle products

    图  单颗粒冲击破碎(箭头为冲击方向)[3]

    Figure  6.  Images of single sphere failure under impact (The arrow denotes the impact direction)[3]

    图  双玻璃珠系的冲击破碎(箭头为冲击方向)

    Figure  7.  Images of double spheres failure under impact (The arrow denotes the impact direction)

    图  冲击产生的局部红外温升

    Figure  8.  Local infrared temperature rise generated during impact

    图  破碎阵面

    Figure  9.  Failure wave front

  • [1] 徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 30101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 30101.
    [2] HUANG J, XU S, YI H, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. doi: 10.1016/j.powtec.2014.08.037
    [3] SHAN J F, XU S L, LIU Y G, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. doi: 10.1016/j.powtec.2018.02.009
    [4] CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses [J]. Mechanics of Materials, 2000, 32(9): 543–554. doi: 10.1016/S0167-6636(00)00026-0
    [5] 易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10

    YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
    [6] CHEONG Y S, SALMAN A D, HOUNSLOW M J. Effect of impact angle and velocity on the fragment size distribution of glass spheres [J]. Powder Technology, 2003, 138(2/3): 189–200.
    [7] SALMAN A D, REYNOLDS G K, FU J S, et al. Descriptive classification of the impact failure modes of spherical particles [J]. Powder Technology, 2004, 143/144: 19–30. doi: 10.1016/j.powtec.2004.04.005
    [8] WU S Z, CHAU K T, YU T X. Crushing and fragmentation of brittle spheres under double impact test [J]. Powder Technology, 2004, 143/144: 41–55. doi: 10.1016/j.powtec.2004.04.028
    [9] HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. doi: 10.1016/j.mechmat.2013.08.002
    [10] POTAPOV A V, CAMPBELL C S. The two mechanisms of particle impact breakage and the velocity effect [J]. Powder Technology, 1997, 93(1): 13–21. doi: 10.1016/S0032-5910(97)03242-7
    [11] 方继松, 王珠, 熊迅, 等. 石英玻璃球撞击刚性壁的破碎过程 [J]. 高压物理学报, 2020, 34(1): 014101.

    FANG J S, WANG Z, XIONG X, et al. Fragmentation process of quartz glass spheres impacting rigid wall [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101.
    [12] PARAB N D, GUO Z R, HUDSPETH M C, et al. Fracture mechanisms of glass particles under dynamic compression [J]. International Journal of Impact Engineering, 2017, 106: 146–154. doi: 10.1016/j.ijimpeng.2017.03.021
    [13] JIANG S, SHEN L M, GUILLARD F, et al. Energy dissipation from two-glass-bead chains under impact [J]. International Journal of Impact Engineering, 2018, 114: 160–168. doi: 10.1016/j.ijimpeng.2018.01.002
    [14] 刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05

    LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperature under shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05
    [15] 单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究 [J]. 实验力学, 2020, 35(1): 41–57.

    SHAN J F, XU S L, ZHANG L, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Journal of Experimental Mechanics, 2020, 35(1): 41–57.
    [16] GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. doi: 10.1103/PhysRevLett.122.015503
    [17] JIANG H B, XU S L, SHAN J F, et al. Dynamic breakage of porous hexagonal boron nitride ceramics subjected to impact loading [J]. Powder Technology, 2019, 353: 359–371. doi: 10.1016/j.powtec.2019.05.028
    [18] 徐松林, 唐志平, 谢卿, 等. 压剪联合冲击下K9玻璃中的失效波 [J]. 爆炸与冲击, 2005, 25(5): 385–392. doi: 10.3321/j.issn:1001-1455.2005.05.001

    XU S L, TANG Z P, XIE Q, et al. Experimental investigation on failure wave in K9 glass under combined pressure and shear impact loading [J]. Explosion and Shock Waves, 2005, 25(5): 385–392. doi: 10.3321/j.issn:1001-1455.2005.05.001
    [19] FENG R. Formation and propagation of failure in shocked glasses [J]. Journal of Applied Physics, 2000, 87(4): 1693–1700. doi: 10.1063/1.372079
  • 加载中
图(9)
计量
  • 文章访问数:  4812
  • HTML全文浏览量:  2197
  • PDF下载量:  32
出版历程
  • 收稿日期:  2020-10-27
  • 修回日期:  2020-11-06

目录

    /

    返回文章
    返回