Experiments of Dynamic Tensile Properties of a Polyvinyl Chloride Elastomer
-
摘要: 为研究软质高分子聚合物材料的静、动态拉伸力学性能,利用Instron-5943万能材料试验机和改进型分离式霍普金森拉杆(SHTB)实验装置对聚氯乙烯(PVC)弹性体材料进行了静、动态拉伸实验,得到了该材料在应变率为0.1 s−1及400~1850 s−1下的应力-应变曲线。动态拉伸实验过程中,联合波形图分析和高速摄像方法对试样连接方式和胶黏剂进行了优选,通过脉冲整形器延缓入射波上升沿以实现恒应变率加载,调整入射杆与吸收杆间空隙解决了入射波基线偏离问题。结果表明:PVC弹性体在准静态(0.1 s−1)拉伸载荷下具有明显的线弹性特征,在动态(400~1850 s−1)拉伸载荷下具有一定的黏性特征。构建了朱-王-唐(ZWT)非线性黏弹性本构模型以表征PVC弹性体材料的黏弹性力学特征,实验与模型拟合结果较吻合。Abstract: To study the static and dynamic tensile properties of soft polymer materials, experiments of a polyvinyl chloride (PVC) elastomer were carried out using the Instron-5943 universal testing machine and an improved split Hopkinson tensile bar (SHTB) experimental device. Stress-strain curves of the material under the strain rates of 0.1 s−1 and 400−1 850 s−1 were obtained. During the dynamic tensile experiment, the combination of waveform analysis and high-speed camera were adopted to optimize the connection mode and adhesive of the specimen. The pulse shaper was used to delay the rising edge of the incident wave to realize constant strain rate loading. The gap between the incident bar and the absorption bar was adjusted to deal with the baseline deviation of incident wave. Results showed that the PVC elastomer shows obvious linear elastic under quasi-static (0.1 s−1) tension, and certain viscosity under dynamic (400−1 850 s−1) tension. The non-linear viscoelastic Zhu-Wang-Tang (ZWT) model was used to characterize the viscoelastic response of the PVC elastomer, and the results of experiment and simulation were in good agreement.
-
Key words:
- PVC elastomer /
- strain rate /
- split Hopkinsontensilebar /
- constitutive model
-
表 1 动态参数变化情况
Table 1. Variations of dynamic properties
Strain rate/s−1 Secant modulus/MPa Peak stress/MPa Peak strain/% 400 89.78 9.19 14.12 700 115.62 13.25 16.07 950 134.82 17.99 26.85 1 850 166.81 27.63 53.19 表 2 ZWT模型拟合参数值
Table 2. ZWT model fitting parameter values
Strain rates/s−1 E0 E1 $\alpha $ $\;\beta $ E2 ${\theta}$2 400 −7.364 6.930 0.166 0.009 8.414 0.002 0 700 −0.350 0.630 0.076 0.004 5.074 0.002 0 950 51.249 −51.151 0.051 0.002 5.482 0.001 7 1 850 2.392 −2.550 0.027 0 8.647 0.001 0 -
[1] MULLIKEN A D, BOYCE M C. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates [J]. International Journal of Solids and Structures, 2006, 43: 1331–1356. doi: 10.1016/j.ijsolstr.2005.04.016 [2] HANG C, SU E D, YAN Q, et al. Experimental investigation on dynamic characteristics of two kinds of rubber engine vibration isolator [J]. Journal of Experimental Mechanics, 2019, 34(1): 157–165. [3] WANG W Q, LI W R, LIANG P, et al. Preparation of car crash dummy skin and its mechanical performance test [J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 192–198. [4] DU B X, SUN X X, XIAO M, et al. Advances in thermal performance of polymer-based composites [J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3149–3159. [5] JHA N K, NACKENHORST U, PAWAR V S, et al. On the constitutive modelling of fatigue damage in rubber-like materials [J]. International Journal of Solids and Structures, 2018, 159: 77–89. [6] 李晓明, 李志海. PVC屋面系统在海航新华航空基地维修机库中的应用 [J]. 中国建筑防水, 2011(7): 7–9, 13. doi: 10.3969/j.issn.1007-497X.2011.07.002LI X M, LI Z H. The application of PVC roofing system in the maintenance hangar of HNA Xinhua Aviation Base [J]. China Building Waterproofing, 2011(7): 7–9, 13. doi: 10.3969/j.issn.1007-497X.2011.07.002 [7] 张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型 [J]. 爆炸与冲击, 2015, 35(1): 51–56. doi: 10.11883/1001-1455(2015)01-0051-06ZHANG L H, ZHANG X Q, YAO X H, et al. Dynamic constitutive model of aviation transparent polyurethane under high strain rate [J]. Explosion and Shock Waves, 2015, 35(1): 51–56. doi: 10.11883/1001-1455(2015)01-0051-06 [8] 孙文旭, 罗智恒, 唐明峰, 等. PBX-1炸药的力学性能和本构关系 [J]. 爆炸与冲击, 2019, 39(7): 072301.SUN W X, LUO Z H, TANG M F, et al. Mechanical properties and constitutive relationship of PBX-1 explosive [J]. Explosion and Shock Waves, 2019, 39(7): 072301. [9] 周永康, 陈力, 崔世堂. 一种新型软材料动态直接拉伸实验技术 [J]. 振动与冲击, 2017, 36(22): 144–148, 224.ZHOU Y K, CHEN L, CUI S T. A new type of soft material dynamic direct tensile experiment technology [J]. Journal of Vibration and Shock, 2017, 36(22): 144–148, 224. [10] 黄微波,宋奕龙,马明亮,等. 喷涂聚脲弹性体抗爆抗冲击性能研究进展 [J]. 工程塑料应用, 2019, 47(1): 148–153.HUANG W B, SONG Y L, MA M L, et al. Research progress on anti-explosion and impact resistance of sprayed polyurea elastomer [J]. Application of Engineering Plastics, 2019, 47(1): 148–153. [11] ZHONG T, ZHONG Z Y, HUANG J W. Rate-dependent phase transition of high density polyethylene [J]. Materialia, 2019, 6: 100274. doi: 10.1016/j.mtla.2019.100274 [12] LIM J, HONG J, CHEN W W, et al. Mechanical response of pig skin under dynamic tensile loading [J]. International Journal of Impact Engineering, 2011, 38(2/3): 130–135. [13] FAN J T, WEERHEIJM J, SLUYS L J. Glass interface effect on high-strain-rate tensile response of a soft polyurethane elastomeric polymer material [J]. Composites Science and Technology, 2015, 118: 55–62. doi: 10.1016/j.compscitech.2015.08.007 [14] GUO L M, LV Y N, DENG Z F. Tension testing of silicone rubber at high strain rates [J]. Polymer Testing, 2016, 50: 270–275. doi: 10.1016/j.polymertesting.2016.01.021 [15] WANG H, DENG X M, WU H J, et al. Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling [J]. Defence Technology, 2019, 15(6): 875–884. doi: 10.1016/j.dt.2019.04.016 [16] LIAO Z S, YAO X H, ZHANG L H. Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates [J]. International Journal of Impact Engineering, 2019, 129: 152–167. doi: 10.1016/j.ijimpeng.2019.03.005 [17] FAN J T, WEERHEIJM J, SLUYS L J. High-strain-rate tensile mechanical response of a polyurethane elastomeric material [J]. Polymer, 2015, 65: 72–80. doi: 10.1016/j.polymer.2015.03.046 [18] CAO K, WANG Y, WANG Y. Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates [J]. International Journal of Solids and Structures, 2014, 51: 2539–2548. doi: 10.1016/j.ijsolstr.2014.03.026 [19] ZHANG L H, YAO X H, ZANG S G, et al. Temperature and strain rate dependent tensile behavior of a transparent polyurethane interlayer [J]. Materials & Design, 2015, 65: 1181–1188. [20] 朱天戈, 李晓林, 杨化浩, 等. 聚丙烯树脂在高拉伸应变速率下的拉伸性能 [J]. 塑料, 2018, 47(2): 114–118.ZHU T G, LI X L, YANG H H, et al. Tensile properties of polypropylene resin at high tensile strain rate [J]. Plastics, 2018, 47(2): 114–118. [21] 中橡集团沈阳橡胶研究设计院. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528–2009 [S]. 北京: 中国标准出版社, 2009. [22] SALEH M, KARIEM M M, LUZINA V, et al. High strain rate deformation of ARMOX 500T and effects on texture development using neutron diffraction techniques and SHPB testing [J]. Materials Science and Engineering: A, 2018, 709: 30–39. doi: 10.1016/j.msea.2017.09.022 [23] 雷经发, 许孟, 刘涛, 等. 聚氯乙烯弹性体静动态力学性能及本构模型 [J]. 爆炸与冲击, 2020, 40(10): 103103.LEI J F, XU M, LIU T, et al. Static and dynamic mechanical properties and constitutive model of PVC elastomer [J]. Explosion and Shock Waves, 2020, 40(10): 103103.