杆式射流对充液防护结构的毁伤机理及影响因素的数值模拟

陈兴 周兰伟 李福明 王毅 李志文 韩斌

陈兴, 周兰伟, 李福明, 王毅, 李志文, 韩斌. 杆式射流对充液防护结构的毁伤机理及影响因素的数值模拟[J]. 高压物理学报, 2021, 35(2): 025202. doi: 10.11858/gywlxb.20200626
引用本文: 陈兴, 周兰伟, 李福明, 王毅, 李志文, 韩斌. 杆式射流对充液防护结构的毁伤机理及影响因素的数值模拟[J]. 高压物理学报, 2021, 35(2): 025202. doi: 10.11858/gywlxb.20200626
CHEN Xing, ZHOU Lanwei, LI Fuming, WANG Yi, LI Zhiwen, HAN Bin. Numerical Simulation on Damage Mechanism and Influencing Factors of JPC Shaped Charge on Liquid-Filled Defensive Structure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025202. doi: 10.11858/gywlxb.20200626
Citation: CHEN Xing, ZHOU Lanwei, LI Fuming, WANG Yi, LI Zhiwen, HAN Bin. Numerical Simulation on Damage Mechanism and Influencing Factors of JPC Shaped Charge on Liquid-Filled Defensive Structure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025202. doi: 10.11858/gywlxb.20200626

杆式射流对充液防护结构的毁伤机理及影响因素的数值模拟

doi: 10.11858/gywlxb.20200626
详细信息
    作者简介:

    陈 兴(1993-),男,硕士,工程师,主要从事弹药终点效应与目标毁伤技术研究. E-mail:1101650359@qq.com

    通讯作者:

    周兰伟(1988-),男,博士,讲师,主要从事弹药终点效应与目标易损性研究. E-mail:lwzhou@njust.edu.cn

  • 中图分类号: O385

Numerical Simulation on Damage Mechanism and Influencing Factors of JPC Shaped Charge on Liquid-Filled Defensive Structure

  • 摘要: 运用ANSYS/LS_DYNA软件分析了聚能射流对充液结构的毁伤,初步获得了药型罩壁厚和材料等参数对聚能战斗部水下作用的影响特性。药型罩壁厚$\delta $在0.04Dk~0.06Dk(Dk为装药直径)之间形成的射流对充液防护结构具有较优的侵彻性能;当$\delta $ < 0.04Dk时,杆流成型结构较差,在水中的动能抗衰减性能较低;$\delta $ > 0.06Dk时,射流的初始动能低,靶后效果差。药型罩可采用纯铁、紫铜和钽3种材料,其中纯铁射流的侵彻能力最高,钽射流在水中的动能抗衰减性能最好,紫铜射流具有较好的综合性能。

     

  • 图  杆式射流聚能战斗部结构

    Figure  1.  JPC cumulative warhead structure

    图  充液防护结构示意图

    Figure  2.  Schematic of liquid-filled defensive structure

    图  数值计算模型

    Figure  3.  Numerical calculation model

    图  不同时刻EFP在水中的侵彻过程

    Figure  4.  Penetration of EFP in water at different times

    图  EFP在水中的侵彻距离

    Figure  5.  EFP penetration distance in water

    图  射流侵彻过程中液舱的压力变化

    Figure  6.  Change of tank pressure during jet penetration

    图  气腔形状变化过程

    Figure  7.  Process of air cavity shape change

    图  不同时刻杆流在水中的形态

    Figure  8.  JPC shape in the water at different times

    图  杆流动能衰减-时间历程

    Figure  9.  JPC kinetic energy-time curve

    图  10  前壁面不同位置的压力-时间曲线

    Figure  10.  Pressure-time curves at different positions of front wall

    图  11  后壁面不同位置的压力-时间曲线

    Figure  11.  Pressure-time curves at different positions of rear wall

    图  12  壁面整体位移响应曲线

    Figure  12.  Displacement response curves of overall wall

    图  13  充液结构前、后壁面的变形量

    Figure  13.  Deformation of the front and rear walls of the liquid-filled structure

    图  14  药型罩壁厚对杆流水中动能衰减的影响

    Figure  14.  Influence of wall thickness of charge cover on kinetic energy attenuation of JPC

    图  15  不同壁厚充液结构壁面的变形量

    Figure  15.  Wall deformation of liquid-filled structure with different wall thicknesses

    图  16  药型罩材质对杆流水中动能衰减的影响

    Figure  16.  Influence of material of charge cover on kinetic energy attenuation of JPC in water

    图  17  不同材质充液结构壁面的变形量

    Figure  17.  Wall deformation of liquid-filled structure with different materials

    表  1  Comp.B炸药材料参数

    Table  1.   Material parameters of Comp.B

    Material$\;\rho $/(g∙cm−3D/(km∙${\rm{s} }$−1A/GPaB/GPaR1R2$\omega$CpCJ/GPaEc/(kJ∙cm−3
    Comp.B1.7177.98524.27.6874.21.10.3429.58.5
    下载: 导出CSV

    表  2  空气和水相关参数[12]

    Table  2.   Parameters of air and water[12]

    Material$\;\rho $/(g∙cm−3C/(km∙${\rm{s} }$−1S1S2S3$\omega$mE0/(J∙kg−3V0
    Air1.25 × 10−33.4400001.400
    Water1.021.6472.561.9861.22680.501
    下载: 导出CSV

    表  3  金属材料相关参数[13-14]

    Table  3.   Material parameters of metal[13-14]

    Material$\;\rho $/(g·cm−3AJ-C/MPaBJ-C/MPaCJ-Cnm
    45 steel7.8303503000.0140.261.03
    Al2.7972654260.0150.341.00
    Fe7.8901753800.0600.320.55
    Cu8.960902920.0250.311.09
    Ta16.6541421640.0570.320.88
    W19.22415001800.0160.121.00
    下载: 导出CSV

    表  4  杆流动能衰减情况

    Table  4.   Kinetic energy attenuation of JPC

    Penetration stageEki/kJΔEk/kJΔt/$ {\text{μ}}{\rm{s}}$Attenuation rate/( kJ·s−1
    Front wall7.601.0010105
    Water6.604.532651.71×104
    Rear wall2.070.34301.13×104
    下载: 导出CSV

    表  5  JPC侵彻不同壁厚防护结构的形态对比

    Table  5.   Comparison of the morphology of JPC after penetrating the defensive structure for different wall thicknesses

    $\delta $v0/(m·s−1Shape of JPC
    Dp = 0 cmDp = 15 cmDp = 30 cm
    0.02Dk3503
    0.04Dk2643
    0.06Dk2095
    0.08Dk1691
    0.10Dk1330
    下载: 导出CSV

    表  6  不同壁厚结构形成杆流的壁面穿孔直径和后效靶穿深

    Table  6.   Wall perforation diameter and target penetration of JPC for different wall thicknesses

    $\delta $/cmFront wall
    diameter/cm
    Rear wall
    diameter/cm
    Aftereffect target
    penetration depth/cm
    0.02Dk0.252Dk0.195Dk0
    0.04Dk0.268Dk0.146Dk0.2Dk
    0.06Dk0.308Dk0.206Dk0
    0.08Dk0.656Dk00
    0.10Dk1.110Dk00
    下载: 导出CSV

    表  7  JPC侵彻不同材质防护结构的形态对比

    Table  7.   Morphological comparison of protective structures with different materials penetrated by JPC

    Linerv0/(m·s–1Shape of JPC
    Dp = 0 cmDp = 15 cmDp = 30 cm
    Al4547BrokenBroken
    Fe3171
    Cu2643
    Ta1648
    W 910
    下载: 导出CSV

    表  8  不同材质结构形成杆流的壁面穿孔直径和后效靶穿深

    Table  8.   The wall perforation diameter and the target penetration depth of JPC formed by different material structures

    Liner materialFront wall
    diameter/cm
    Rear wall
    diameter/cm
    Aftereffect target
    penetration depth/cm
    Al0.418Dk00
    Fe0.232Dk0.098Dk0.6Dk
    Cu0.268Dk0.146Dk0.2Dk
    Ta0.250Dk0.162Dk0
    W0.892Dk0.116Dk0
    下载: 导出CSV
  • [1] HELD M. Verification of the equation for radial crater growth by shaped charge JPC penetration [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 387–398. doi: 10.1016/0734-743X(95)99864-N
    [2] HELD M, HUANG N S, JIANG D, et al. Determination of the crater radius as a function of time of a shaped charge jet that penetrates water [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(2): 64–69. doi: 10.1002/prep.19960210203
    [3] JU Y Y, ZHANG Q M, YANG L, et al. Analysis on EFP penetrating against water-partitioned armor [J]. Key Engineering Materials, 2013: 543–546.
    [4] 杨莉, 张庆明, 汪玉, 等. 反舰聚能战斗部装药结构研究 [J]. 兵工学报, 2009(Suppl 2): 154–158.

    YANG L, ZHANG Q M, WANG Y, et al. Research on shaped charge warhead of anti-ship missile [J]. Acta Armamentarii, 2009(Suppl 2): 154–158.
    [5] PEI M J, LI C B. Experimental investigation of SCRSP penetrating the compound target with water interlayer [J]. Chinese Journal of Explosives & Propellants, 2008, 31(3): 15–19.
    [6] 李成兵, 裴明敬, 沈兆武. 聚能杆式弹丸侵彻水夹层复合靶相似律分析 [J]. 火炸药学报, 2006, 29(6): 1–5. doi: 10.3969/j.issn.1007-7812.2006.06.001

    LI C B, PEI M J, SHEN Z W. Analysis of similitude law of rod-shaped projectile penetrating into compound target with water interlayer [J]. Chinese Journal of Explosives & Propellants, 2006, 29(6): 1–5. doi: 10.3969/j.issn.1007-7812.2006.06.001
    [7] 史进伟, 罗兴柏, 蒋建伟, 等. 射流侵彻水夹层间隔靶的理论和实验研究 [J]. 含能材料, 2016, 24(3): 213–218. doi: 10.11943/j.issn.1006-9941.2016.03.001

    SHI J W, LUO X B, JIANG J W, et al. Numerical simulation and experimental study on the cratering stage of shaped charge jet penetrating into target [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 213–218. doi: 10.11943/j.issn.1006-9941.2016.03.001
    [8] 王长利, 周刚, 马坤, 等. 聚能装药水下爆炸冲击波载荷规律 [J]. 高压物理学报, 2017,31(4): 104–112.

    WANG C L, ZHOU G, MA K, et al. Shockwave characteristics of shaped charge exploded underwater [J]. Chinese Journal of High Pressure Physics, 2017,31(4): 104–112.
    [9] 王长利, 马坤, 周刚, 等. 防雷舱结构在聚能装药水下爆炸作用下的毁伤研究 [J]. 爆炸与冲击, 2018, 38(5): 1145–1154. doi: 10.11883/bzycj-2017-0119

    WANG C L, MA K, ZHOU G, et al. Damage effect of cabin near shipboard under shaped charge exploding underwater [J]. Explosion and Shock Waves, 2018, 38(5): 1145–1154. doi: 10.11883/bzycj-2017-0119
    [10] 刘念念, 宋丹丹, 金辉, 等. 半球形聚能装药对复合靶板结构的毁伤数值仿真与试验研究 [J]. 振动与冲击, 2018, 37(4): 153–159.

    LIU N N, SONG D D, JIN H, et al. Numerical simulation and experimental study on the damage characteristics of hem-ispherical shaped charge on composite armor [J]. Journal of Vibration and Shock, 2018, 37(4): 153–159.
    [11] 李兵, 刘念念, 陈高杰, 等. 水中聚能战斗部毁伤双层圆柱壳的数值模拟与试验研究[J]. 兵工学报, 2018. 39(1): 38−45.

    LI B, LIU N N, CHEN G J, et al. Numerical simulation and experimental research on damage of shaped charge warhead to double-layer columniform shell [J]. Acta Armamentarii, 2018. 39(1): 38−45.
    [12] 王雅君, 李伟兵, 王晓鸣, 等. EFP水中飞行特性及侵彻间隔靶的仿真与试验研究 [J]. 含能材料, 2017, 25(6): 459–465. doi: 10.11943/j.issn.1006-9941.2017.06.003

    WANG Y J, LI W B, WANG X M, et al. Numerical simulation and experimental study on flight characteristics and penetration against spaced targets of EFP in water [J]. Chinese Journal of Energetic Materials, 2017, 25(6): 459–465. doi: 10.11943/j.issn.1006-9941.2017.06.003
    [13] 樊雪飞, 李伟兵, 王晓鸣, 等. 药型罩材料性能参数对双模毁伤元成型的影响 [J]. 含能材料, 2017, 25(11): 888–895. doi: 10.11943/j.issn.1006-9941.2017.11.002

    FAN X F, LI W B, WANG X M, et al. Effects of liner's material properties on the forming of dual mode damage elements [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 888–895. doi: 10.11943/j.issn.1006-9941.2017.11.002
    [14] 郭腾飞, 李伟兵, 李文彬, 洪晓文. 钽罩结构参数对EFP成型及侵彻性能的控制 [J]. 高压物理学报, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667

    GUO T F, LI W B, LI W B, et al. Controlling effect of tantalum liner's structural parameters on EFP formation and penetration performance [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667
  • 加载中
图(17) / 表(8)
计量
  • 文章访问数:  4209
  • HTML全文浏览量:  1941
  • PDF下载量:  38
出版历程
  • 收稿日期:  2020-10-13
  • 修回日期:  2020-11-01
  • 发布日期:  2020-12-25

目录

    /

    返回文章
    返回