Plastic Deformation and Size Strengthening of Nanometals
-
摘要: 高压技术已被引入纳米材料研究约30年。早期的纳米材料研究主要采用X射线衍射、拉曼光谱、红外光谱等方法表征材料的结构转变和状态方程。近年来,我们采用径向金刚石对顶砧X射线衍射结合透射电镜的方法,扩展了对纳米金属塑性形变的探索,成功地在3 nm的小尺寸纳米晶中探测到位错活动的证据,发现偏位错和形变孪晶主导了20 nm以下纳米金属的塑性形变。利用该技术,我们观察到镍纳米晶晶粒旋转对晶粒尺寸依赖性的逆转,发现镍纳米晶体的强化可以扩展到3 nm。与传统技术相比,高压技术在将机械载荷施加到纳米尺寸样品上并在原位或离位表征结构和机械性能方面更具优势,从而有助于揭示微纳力学的奥秘,在多尺度材料力学中架起桥梁。这些发现有助于制造具有更广泛应用前景的先进材料。Abstract: High pressure techniques have been introduced to nanomaterials research for about three decades. Most of the studies, especially in the earlier time, were mainly X-ray diffraction (XRD), Raman and infrared spectroscopy investigations on the structural transition and equation of state. In recent years, we extended the explorations for the plastic deformation of nanomaterials by employing radial diamond-anvil cell XRD and transmission electron microscopy (TEM). We have successfully probed the dislocation activities in 3 nm nanocrystals, but also seen that partial dislocations and deformation twinning dominate the plastic deformation below 20 nm. We have observed the reversal in the grain size dependence of grain rotation in nickel, and have found that the strengthening of nickel nanocrystals could be extended down to 3 nm. Compared with the traditional techniques, high pressure techniques are more advantageous in applying mechanical load to nanosized samples and characterizing the structural and mechanical properties in situ or ex situ, which could help to unveil the mysteries of mechanics at the nanoscale and bridge the knowledge on the material mechanics at the multiscale. With these knowledges, more advanced materials could be fabricated for wider and specialized applications.
-
Key words:
- nanometal /
- plastic deformation /
- dislocation /
- grain rotation /
- strength
-
图 2 (a) 不同压力(应力)下WC标记晶粒的劳厄衍射斑点随金刚石的
${(06{\bar 2})}$ 衍射斑的位置发生变化,表明标记晶粒发生了转动;(b)(c)不同应力下不同晶粒尺寸的纳米镍介质中的WC标记晶粒的转动角度不同(WC的晶轴比率c/a反映标记晶粒所处的应力状态,在相同的应力条件下,70 nm的镍介质中的WC晶粒转动角度最大)[13]Figure 2. (a) The position changes of WC Laue spots relative to the diamond
${(06{\bar 2})}$ diffraction spot at different pressures/stresses, indicating that the WC marker crystal rotates; (b)(c) the rotation angles of WC marker crystals in nickel media with different grain sizes at two different shear stress conditions (The lattice parameter ratio c/a of WC is used to reflect the shear stress conditions which WC marker crystals are exposed. At the same stress level, WC crystals in 70 nm nickel medium rotate the most.)[13]图 3 (a)高压原位径向X射线衍射示意图;(b)不同晶粒尺寸的纳米镍的3个晶面的平均差应力-晶格应变曲线(平均差应力是统计镍的(111)、(200)和(220)晶面的差应力平均值,晶格应变则通过晶格参数的相对变化与常压下晶格参数的比值算出)[34]
Figure 3. (a) Experimental setup of in situ high pressure radial XRD; (b) average differential stress-lattice strain curves of three lattice planes of nano nickel with different grain sizes (The average differential stress is calculated by averaging the differential stress of (111), (200) and (220) planes of nickel and the lattice strain is calculated by the relative changes of lattice parameters over the lattice parameter at ambient conditions.)[34]
-
[1] YAMAKOV V, WOLF D, SALAZAR M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Materialia, 2001, 49(14): 2713–2722. doi: 10.1016/S1359-6454(01)00167-7 [2] VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040 [3] KUMAR K S, SURESH S, CHISHOLM M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Materialia, 2003, 51(2): 387–405. doi: 10.1016/s1359-6454(02)00421-4 [4] CHEN B, LUTKER K, RAJU S V, et al. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity [J]. Science, 2012, 338(6113): 1448–1451. doi: 10.1126/science.1228211 [5] HUGHES D A, HANSEN N. Exploring the limit of dislocation based plasticity in nanostructured metals [J]. Physical Review Letters, 2014, 112(13): 135504. doi: 10.1103/PhysRevLett.112.135504 [6] CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. doi: 10.1126/science.1083727 [7] YAMAKOV V, WOLF D, PHILLPOT S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Materialia, 2002, 50(20): 5005–5020. doi: 10.1016/S1359-6454(02)00318-X [8] SHAN Z W, STACH E A, WIEZOREK J M K, et al. Grain boundary-mediated plasticity in nanocrystalline nickel [J]. Science, 2004, 305(5684): 654–657. doi: 10.1126/science.1098741 [9] SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328 [10] SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. doi: 10.1126/science.1086636 [11] VAN SWYGENHOVEN H, DERLET P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Physical Review B, 2001, 64(22): 224105. doi: 10.1103/PhysRevB.64.224105 [12] WANG L H, TENG J, LIU P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nature Communications, 2014, 5: 4402. doi: 10.1038/ncomms5402 [13] ZHOU X L, TAMURA N, MI Z Y, et al. Reversal in the size dependence of grain rotation [J]. Physical Review Letters, 2017, 118(9): 096101. doi: 10.1103/PhysRevLett.118.096101 [14] ZHOU X L, TAMURA N, MI Z Y, et al. Measuring grain rotation at the nanoscale [J]. High Pressure Research, 2017, 37(3): 287–295. doi: 10.1080/08957959.2017.1334775 [15] THOMPSON A W. Effect of grain size on work hardening in nickel [J]. Acta Metallurgica, 1977, 25(1): 83–86. doi: 10.1016/0001-6160(77)90249-8 [16] NORFLEET D M, DIMIDUK D M, POLASIK S J, et al. Dislocation structures and their relationship to strength in deformed nickel microcrystals [J]. Acta Materialia, 2008, 56(13): 2988–3001. doi: 10.1016/j.actamat.2008.02.046 [17] LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. doi: 10.1126/science.1092905 [18] LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. doi: 10.1126/science.1159610 [19] CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metallurgica, 1989, 23(10): 1679–1683. doi: 10.1016/0036-9748(89)90342-6 [20] CONRAD H, NARAYAN J. Mechanism for grain size softening in nanocrystalline Zn [J]. Applied Physics Letters, 2002, 81(12): 2241–2243. doi: 10.1063/1.1507353 [21] LU L, CHEN X, HUANG X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323(5914): 607–610. doi: 10.1126/science.1167641 [22] KNAPP J A, FOLLSTAEDT D M. Hall-Petch relationship in pulsed-laser deposited nickel films [J]. Journal of Materials Research, 2004, 19(1): 218–227. doi: 10.1557/jmr.2004.19.1.218 [23] CHEN J, LU L, LU K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scripta Materialia, 2006, 54(11): 1913–1918. doi: 10.1016/j.scriptamat.2006.02.022 [24] WEERTMAN J R. Hall-Petch strengthening in nanocrystalline metals [J]. Materials Science and Engineering: A, 1993, 166(1/2): 161–167. doi: 10.1016/0921-5093(93)90319-A [25] SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia, 1997, 45(10): 4019–4025. doi: 10.1016/S1359-6454(97)00092-X [26] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51(4): 427–556. doi: 10.1016/j.pmatsci.2005.08.003 [27] KOCH C C, NARAYAN J. The inverse Hall-Petch effect: fact or artifact? [C]//Materials Research Society Symposium Proceeding. Cambridge: Cambridge University Press, 2001, 634: B5.1.1. [28] DAO M, LU L, ASARO R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Materialia, 2007, 55(12): 4041–4065. doi: 10.1016/j.actamat.2007.01.038 [29] LEE PENN R, BANFIELD J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals [J]. Science, 1998, 281(5379): 969–971. doi: 10.1126/science.281.5379.969 [30] BANFIELD J F, WELCH S A, ZHANG H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science, 2000, 289(5480): 751–754. doi: 10.1126/science.289.5480.751 [31] MARGULIES L, WINTHER G, POULSEN H F. In situ measurement of grain rotation during deformation of polycrystals [J]. Science, 2001, 291(5512): 2392–2394. doi: 10.1126/science.1057956 [32] UPMANYU M, SROLOVITZ D J, LOBKOVSKY A E, et al. Simultaneous grain boundary migration and grain rotation [J]. Acta Materialia, 2006, 54(7): 1707–1719. doi: 10.1016/j.actamat.2005.11.036 [33] YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395 [34] ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z [35] MERKEL S, WENK H R, SHU J F, et al. Deformation of polycrystalline MgO at pressures of the lower mantle [J]. Journal of Geophysical Research, 2002, 107(B11): 2271. doi: 10.1029/2001jb000920