Crashworthiness Analysis and Optimization Design of New Thin-Walled Tube
-
摘要: 采用LS-DYNA仿真软件对新型薄壁管在轴向冲击荷载作用下进行了数值模拟,分析了上端薄壁圆管长度和波纹型诱导槽半径对其耐撞性及变形模式的影响,并与普通薄壁圆管进行比较。结果表明:当上端薄壁圆管长度及波纹形诱导槽半径设计合理时,新型薄壁管在压溃阶段的最大峰值压溃力、比吸能以及变形模式相比于普通薄壁圆管更优异。为了获得更好吸能效果的新型薄壁管,以其比吸能和最大峰值压溃力为优化指标,以上端薄壁圆管长度和波纹形诱导槽半径为动态变量,建立了新型薄壁管多目标优化方案。基于Kriging法构造了目标近似函数,同时结合NSGA-Ⅱ算法求解了多目标优化问题。Abstract: Numerical simulation of the new thin-walled tube under the axial impact load was obtained by using LS-DYNA. The effects of the length of the upper thin-walled circular tube and the radius of the corrugated inducing groove on its crashworthiness and deformation mode were analyzed, and compared with the ordinary thin-walled circular tube. The results show that when the length of the upper thin-walled circular tube and the radius of the corrugated inducing groove are designed reasonably, the maximum peak crushing force, specific energy absorption and deformation mode of the new thin-walled tube in the crushing stage are superior to those the ordinary thin-walled circular tube. In order to obtain the new thin-walled tube with a better energy absorption effect, a multi-objective optimization scheme was built by using specific energy absorption and the maximum peak crushing force as optimization indicators, and the length of the upper thin-walled circular tube and the radius of the corrugated inducing groove as variables. The objective approximate functions were constructed based on the Kriging method, and the NSGA-Ⅱ algorithm was used to solve the multi-objective optimization problem.
-
Key words:
- LS-DYNA /
- new thin-walled tube /
- crashworthiness /
- deformation mode /
- optimization design
-
表 1 实验试件几何参数及实验细节
Table 1. Geometric parameters of the specimen and the test details
Type Length/mm Thickness/mm Diameter/mm Impact mass/kg Impact velocity/(m·s−1) Impact energy/kJ HS-10 90 0.8 31 200 5.48 3 HS-11 90 0.8 31 100 7.75 3 表 2 有限元分析结果与实验值对比
Table 2. Comparisons of experimental results and calculated results
Type Maximum peak crushing force Energy absorption Crushing displacement Exp./kN Calc./kN Error/% Exp./kJ Calc./kJ Error/% Exp./mm Calc./mm Error/% HS-10 114.0 113.2 0.7 2.93 2.92 0.3 66.2 64.2 3.0 HS-11 116.0 114.1 1.6 2.94 2.91 1.0 65.8 63.3 3.8 表 3 响应面模型精度评估
Table 3. Accuracy evaluations of the response surface model
Index R2 RMSE RE SEA 0.9967 0.0476 [–0.0476,0.0464] Fmax 0.9814 0.0518 [–0.0362,0.0437] 表 4 优化结果、仿真结果和原模型的对比
Table 4. Comparison of optimized results, calculated results and results of original model
Method h1/mm r/mm SEA/(J·g−1) Fmax/kN Optimized 30.21 1.39 67.53 109.63 Calculated 30.21 1.39 68.23 111.98 Original model 0 0 62.42 123.89 -
[1] ZHANG Y C, XU P, PENG Y, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures [J]. Journal of Vibration and Shock, 2017, 36(12): 31–36. [2] 张雄. 轻质薄壁结构耐撞性分析与设计优化[D]. 大连: 大连理工大学, 2008: 1−13.ZHANG X. Crashworthiness analysis and design optimization of light thin-walled structures [D]. Dalian: Dalian University of Technology, 2008: 1−13. [3] LU G X, YU T X. Energy absorption of structures and materials [M]. Cambridge: Woodhead Publishing Limited, 2003: 3−8. [4] AVALL M, CHIANDUSSI G. Optimization of a vehicle energy absorbing steel component with experimental validation [J]. International Journal of Impact Engineering, 2007, 34(4): 843–858. doi: 10.1016/j.ijimpeng.2006.02.001 [5] 谭丽辉, 谭洪武, 毛志强, 等. 具有不同诱导槽结构的薄壁圆管抗撞性优化 [J]. 振动与冲击, 2014, 33(8): 16–21.TAN L H, TAN H W, MAO Z Q, et al. Crashworthiness design optimization of thin-walled cylinders with different inducing grooves [J]. Journal of Vibration and Shock, 2014, 33(8): 16–21. [6] EYVAZIAN A, HABIBI M K, HAMOUDA A M, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes [J]. Materials and Design, 2014, 54: 1028–1038. doi: 10.1016/j.matdes.2013.09.031 [7] LIU Z F, HAO W Q, XIE J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns [J]. Thin-Walled Structures, 2015, 94: 410–423. doi: 10.1016/j.tws.2015.05.002 [8] 朱江涛, 徐鹏, 蔡宣明. 高g值冲击下阶梯形金属壳缓冲吸能特性研究 [J]. 兵器材料科学与工程, 2016, 39(6): 92–97.ZHU J T, XU P, CAI X M. Energy absorption characteristics of stepped metal shell under high g value [J]. Ordnance Material Science and Engineering, 2016, 39(6): 92–97. [9] HA N S, LU G X, XIANG X M. High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration [J]. International Journal of Mechanical Sciences, 2018, 148: 409–421. doi: 10.1016/j.ijmecsci.2018.08.041 [10] WU S, LI G, SUN G, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube [J]. Thin-Walled Structures, 2016, 105: 121–134. doi: 10.1016/j.tws.2016.03.029 [11] TAI Y S, HUANG M Y, HU H T. Axial compression and energy absorption characteristics of high-strength thin-walled cylinders under impact load [J]. Theoretical and Applied Fracture Mechanics, 2010, 53(1): 1–8. doi: 10.1016/j.tafmec.2009.12.001 [12] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [M]. Livermore, CA: Livermore Software Technology Corporation (LSTC), 2014: 1−10. [13] MENG Z, SUN Q. Energy-absorption characteristics of thin-walled tube with different axial-section shapes under axial impulsive load [J]. Computer Simulation, 2010, 27(8): 325–329. [14] ACAR E, RAIS-ROHANI M. Ensemble of metamodels with optimized weight factors [J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 279–294. doi: 10.1007/s00158-008-0230-y [15] ACAR E, GULER M A, GERÇEKER B, et al. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations [J]. Thin-Walled Structures, 2011, 49(1): 94–105. doi: 10.1016/j.tws.2010.08.010 [16] ZHANG Y, SUN G, LI G, et al. Optimization of foam-filled bitubal structures for crashworthiness criteria [J]. Materials and Design, 2012, 38(7): 99–109. [17] 邓志芳. 双级薄壁吸能管的抗撞性理论推导和实验研究[D]. 长沙: 湖南大学, 2017: 40−43.DENG Z F. Crashworthiness research of two-stage thin-walled tube from theoretical derivation and experimental study [D]. Changsha: Hunan University, 2017: 40−43. [18] 张枝丹. 多胞填充薄壁构件的抗撞性优化设计[D]. 长沙: 湖南大学, 2013: 15−18.ZHANG Z D. Optimization design of multi-cell thin-walled components with crashworthiness criterion [D]. Changsha: Hunan University, 2013: 15−18. [19] KALYANMOY D, AMRIT P, SAMEER A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017