Mechanical Properties and Oxidation Behavior of ZrB2-SiC Ultra-High Temperature Ceramics Prepared by Spark Plasma Sintering
-
摘要: 在服役环境中,超高声速飞行器表面与空气剧烈摩擦导致温度极高。超高温陶瓷相较于一般陶瓷而言具有高熔点和良好的抗氧化烧蚀性能,是目前极具前景的热防护材料之一。采用放电等离子两步烧结工艺将ZrB2纳米粉末和SiC粉末在1 700 ℃下制备超高温陶瓷材料ZrB2-20%SiC,通过纳米压痕微观实验、三点弯实验研究其力学性能及其在高温环境下的氧化行为,着重分析1 000、1 200、1 400和1 600 ℃ 4种不同氧化温度下ZrB2-20%SiC超高温陶瓷的氧化表面、氧化截面和氧化层厚度。结果表明:ZrB2-20%SiC超高温陶瓷的硬度为18 GPa,弹性模量为541 GPa,断裂韧性为5.7 MPa·m1/2;当氧化温度为1600 ℃时,超高温陶瓷内部的SiC由被动氧化转变为主动氧化,并且随着氧化温度升高,超高温陶瓷氧化层厚度与氧化温度呈正相关。Abstract: In the application environment, the surface of the ultra-high-speed aircraft is violently rubbed with the air to make the temperature extremely high. Compared with ordinary ceramics, ultra-high temperature ceramics possess a higher melting point with good oxidation and ablation resistance performance. Therefore, it is particularly interested to be used as thermal protection materials. In this paper, ZrB2-20%SiC ultra-high temperature ceramic materials are prepared by using the spark plasma two-step sintering process of ZrB2 nanopowder and SiC powder at 1700 ℃. The mechanical properties of ZrB2-20%SiC are studied through nanoindentation experiment and three-point bending experiment. The oxidation behavior of ZrB2-20%SiC ultra-high temperature ceramics at four different oxidation temperatures of 1000, 1200, 1400 and 1600 ℃ is analyzed in this paper. The results show that the hardness of the ZrB2-20%SiC ultra-high temperature is 18 GPa, and the elastic modulus is 541 GPa with the fracture toughness of 5.7 MPa·m1/2. When the oxidation temperature is 1600 ℃, the SiC inside the ultra-high temperature ceramic would transform from passive oxidation to active oxidation. As the oxidation temperature increases, the thickness of the ultra-high temperature ceramic oxide layer and the oxidation temperature demonstrate a positive correlation trend.
-
表 1 ZrB2基陶瓷材料的粒径尺寸、相对密度及力学性能
Table 1. Particle size, relative density and mechanical properties of ZrB2-based ceramic materials
Material ZrB2 particle
size/μmSiC particle
size/μmRelative
density/%Elastic
modulus/MPaHardness/
GPaFracture toughness/
(MPa·m1/2)Preparation method ZrB2-20%SiC[22] 3.0 1.50 94.4 13.4 4.8 Hot press sintering ZrB2-20%SiC[23] 3.9 2.00 97.5 446 5.5 Hot press sintering ZrB2-20%SiC[24] 1.2 1.00 99.8 520 20.7 4.6 Hot press sintering ZrB2-20%SiC 0.4 0.05 98.1 541 18.0 5.7 Spark plasma sintering -
[1] 杜善义, 方岱宁, 孟松鹤, 等. “近空间飞行器的关键基础科学问题”重大研究计划结题综述 [J]. 中国科学基金, 2017, 31(2): 109–114.DU S Y, FANG D N, MENG S H, et al. Summary of the major research project of "Key Basic Scientific Issues of Near Space Vehicles" [J]. Chinese Science Foundation, 2017, 31(2): 109–114. [2] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles [J]. Progress in Aerospace Sciences, 2016, 84: 1–28. doi: 10.1016/j.paerosci.2016.04.001 [3] TANG S F, HU C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review [J]. Journal of Materials Science & Technology, 2017, 33(2): 117–130. [4] 韩洪涛, 王璐, 郑义. 2019年国外高超声速技术发展回顾 [J]. 飞航导弹, 2014(3): 16–20.HAN H T, WANG L, ZHENG Y. Review of the development of foreign hypersonic technology in 2019 [J]. Flying Missile, 2014(3): 16–20. [5] 廖龙文, 曾鹏, 陈军燕, 等. 高超声速飞行器发展困境分析 [J]. 飞航导弹, 2019(12): 22–27.LIAO L W, ZENG P, CHEN J Y, et al. Analysis on the development dilemma of hypersonic vehicles [J]. Flying Missile, 2019(12): 22–27. [6] 张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料的研究进展 [J]. 科学通报, 2015, 60(3): 257–266.ZHANG X H, HU P, HAN J C, et al. Research progress of ultra-high temperature ceramic composite materials [J]. Science Bulletin, 2015, 60(3): 257–266. [7] 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展 [J]. 应用数学和力学, 2008, 29(1): 47–56. doi: 10.3879/j.issn.1000-0887.2008.01.007YANG Y Z, YANG J L, FANG D N. Research progress on thermal protection materials and structures of hypersonic vehicles [J]. Applied Mathematics and Mechanics, 2008, 29(1): 47–56. doi: 10.3879/j.issn.1000-0887.2008.01.007 [8] 樊乾国, 郝志彪, 闫联生, 等. 超高温陶瓷改性C/SiC复合材料的研究进展 [J]. 材料导报, 2011, 25(S1): 539–542.FAN Q G, HAO Z B, YAN L S, et al. Research progress of C/SiC composites modified by ultra-high temperature ceramics [J]. Materials Review, 2011, 25(S1): 539–542. [9] 向阳. Cf/SiC复合材料超高温陶瓷涂层的制备及性能研究 [D].长沙: 国防科学技术大学, 2008: 4−9.XIANG Y. Fabrication and properties investigation on ultra high temperature ceramics coatings of Cf/SiC composites [D]. Changsha: National University of Defense Technology, 2008: 4−9. [10] PADTURE N P. Advanced structural ceramics in aerospace propulsion [J]. Nature Materials, 2016, 15(8): 804–809. doi: 10.1038/nmat4687 [11] 史姣红, 李玉龙, 刘元镛, 等. 超高速碰撞C-SiC复合材料双层防护结构的力学特性 [J]. 高压物理学报, 2012, 26(1): 18–26. doi: 10.11858/gywlxb.2012.01.003SHI J H, LI Y L, LIU Y Y, et al. Mechanical properties of C-SiC composite double-layer protection structure for hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 18–26. doi: 10.11858/gywlxb.2012.01.003 [12] HU P, WANG G L, WANG Z. Oxidation mechanism and resistance of ZrB2-SiC composites [J]. Corrosion Science, 2009, 51(11): 2724–2732. doi: 10.1016/j.corsci.2009.07.005 [13] WILLIAM G F, GREG E H. Ultra-high temperature ceramics: materials for extreme environments [J]. Scripta Materialia, 2016, 129(1): 94–99. [14] JIN X C, LI P, HOU C, et al. Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress [J]. Ceramics International, 2019, 45(6): 7278–7285. doi: 10.1016/j.ceramint.2019.01.009 [15] ZOU J, ZHANG G J, VLEUGELS J, et al. High temperature strength of hot pressed ZrB2-20vol%SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes [J]. Journal of the European Ceramic Society, 2013, 33(10): 1609–1614. doi: 10.1016/j.jeurceramsoc.2013.03.001 [16] 陈小武. Cf/SiC-ZrC-ZrB2超高温陶瓷基复合材料的制备及性能研究 [D]. 上海: 中国科学院上海硅酸盐研究所, 2018: 5−8.CHEN X W. Preparation and properties of Cf/SiC-ZrC-ZrB2 ultra-high temperature ceramic matrix composites [D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018: 5−8. [17] WILLIAMS P A, SAKIDJA R, PEREPEZKO J H, et al. Oxidation of ZrB2-SiC ultra-high temperature composites over a wide range of SiC content [J]. Journal of the European Ceramic Society, 2012, 32(14): 3875–3883. doi: 10.1016/j.jeurceramsoc.2012.05.021 [18] 王秀芬, 周曦亚. 放电等离子烧结技术 [J]. 中国陶瓷, 2006, 42(7): 14–16. doi: 10.3969/j.issn.1001-9642.2006.07.005WANG X F, ZHOU X Y. Spark plasma sintering technology [J]. Chinese Ceramics, 2006, 42(7): 14–16. doi: 10.3969/j.issn.1001-9642.2006.07.005 [19] 刘永红, 于丽丽, 徐玉龙, 等. 电火花放电通道蚀除绝缘工程陶瓷的热力学特性研究 [J]. 高压物理学报, 2009, 23(2): 91–97. doi: 10.3969/j.issn.1000-5773.2009.02.003LIU Y H, YU L L, XU Y L, et al. Study on the thermodynamic characteristics of electrical spark discharge channel erosion of insulating engineering ceramics [J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 91–97. doi: 10.3969/j.issn.1000-5773.2009.02.003 [20] HU P, GUI K, HONG W, et al. Preparation of ZrB2-SiC ceramics by single-step and optimized two-step hot pressing using nanosized ZrB2 powders [J]. Materials Letters, 2017, 200(1): 14–17. [21] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564 [22] 万德田, 魏永金, 包亦望, 等. 陶瓷断裂韧性测试方法准确性和简便性比较分析 [J]. 硅酸盐学报, 2019, 47(8): 1080–1088.WAN D T, WEI Y J, BAO Y W, et al. Comparative analysis of accuracy and convenience of ceramic fracture toughness testing methods [J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1080–1088. [23] 龚江宏, 关振铎. 陶瓷材料断裂韧性测试技术在中国的研究进展 [J]. 硅酸盐通报, 1996, 15(1): 53–57.GONG J H, GUAN Z D. Research progress of ceramic material fracture toughness testing technology in China [J]. Bulletin of the Chinese Ceramic Society, 1996, 15(1): 53–57. [24] ADAM L C, WILLIAM F G F, GREGORY E H, et al. High-strength zirconium diboride-based ceramics [J]. Journal of the American Ceramic Society, 2004, 87(6): 1170–1172. doi: 10.1111/j.1551-2916.2004.01170.x [25] PATEL M, REDDY J J, PRASAD V V B, et al. Strength of hot pressed ZrB2-SiC composite after exposure to high temperatures (1 000-1 700 ℃) [J]. Journal of the European Ceramic Society, 2012, 32(16): 4455–4467. doi: 10.1016/j.jeurceramsoc.2012.06.025 [26] ZHU S, WILLIAM G F, GREGORY E H. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics [J]. Journal of the European Ceramic Society, 2007, 27(4): 2077–2083. doi: 10.1016/j.jeurceramsoc.2006.07.003 [27] WU W W, SAKKA Y, SUZUKI T S, et al. Microstructure and anisotropic properties of textured ZrB2 and ZrB2-MoSi2 ceramics prepared by strong magnetic field alignment [J]. International Journal of Applied Ceramic Technology, 2014, 11(2): 218–227. doi: 10.1111/ijac.12061