三轴应力下花岗岩加载破坏的能量演化和损伤特征

刘鹏飞 范俊奇 郭佳奇 朱斌忠

刘鹏飞, 范俊奇, 郭佳奇, 朱斌忠. 三轴应力下花岗岩加载破坏的能量演化和损伤特征[J]. 高压物理学报, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
引用本文: 刘鹏飞, 范俊奇, 郭佳奇, 朱斌忠. 三轴应力下花岗岩加载破坏的能量演化和损伤特征[J]. 高压物理学报, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
LIU Pengfei, FAN Junqi, GUO Jiaqi, ZHU Binzhong. Damage and Energy Evolution Characteristics of Granite under Triaxial Stress[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622
Citation: LIU Pengfei, FAN Junqi, GUO Jiaqi, ZHU Binzhong. Damage and Energy Evolution Characteristics of Granite under Triaxial Stress[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. doi: 10.11858/gywlxb.20200622

三轴应力下花岗岩加载破坏的能量演化和损伤特征

doi: 10.11858/gywlxb.20200622
基金项目: 国家自然科学基金(51778215);中国博士后科学基金(2018M631114)
详细信息
    作者简介:

    刘鹏飞(1996-),男,硕士研究生,主要从事隧道与地下工程研究. E-mail: lpf546@163.com

    通讯作者:

    郭佳奇(1981-),男,博士生导师,副教授,主要从事隧道与地下工程研究. E-mail: gjq519@163.com

  • 中图分类号: O34;TU45

Damage and Energy Evolution Characteristics of Granite under Triaxial Stress

  • 摘要: 为揭示不同围压下硬岩在破坏过程中的力学性质和能量演化规律,基于RMT-150B岩石力学试验系统对花岗岩试样进行不同围压条件下常规三轴压缩试验。研究结果表明:岩样的峰值应力和围压具有较强的线性关系,利用Mohr-Coulomb强度准则求出花岗岩的黏聚力为23.548 MPa,内摩擦角为57.629°。围压对花岗岩加载破坏过程中能量演化的影响显著,岩石的峰值能量、弹性应变能以及耗散能都随着围压的增大而增大,且两者呈线性增加关系。根据岩石的线性储能规律,提出了确定岩石应力阈值的方法。围压越大,起裂应力和扩容应力越大,且岩样起裂点处与扩容点处的能量也越大;当围压较低时,岩石破坏前储存的能量较少,破坏时能量释放速率低,岩样表现为典型低劈裂破坏;在高围压情况下,能量快速释放,岩样表现为剪切破坏。基于能量演化规律,提出了岩石损伤演化模型,得到了花岗岩的损伤变量D在不同围压下加载破坏过程中的演化规律。

     

  • 图  RMT-150B岩石力学试验系统

    Figure  1.  RMT-150B rock mechanics test system

    图  不同围压下花岗岩的应力-应变曲线

    Figure  2.  Stress-strain curves of granite underdifferent confining pressures

    图  围压与峰值应力、应变的关系

    Figure  3.  Relationship of peak stress and strain with confining pressure

    图  不同围压下花岗岩岩样的破坏特征

    Figure  4.  Failure characteristics of granite samples under different confining pressures

    图  岩石压缩过程中UdUe 的关系

    Figure  5.  Relationship between Ud and Ue in rock failure process

    图  不同围压下花岗岩的能量演化特征

    Figure  6.  Energy evolution characteristics of granite under different confining pressures

    图  不同围压下的应力阈值及能量

    Figure  7.  Stress threshold and energy under different confining pressures

    图  围压与峰值点处能量的关系

    Figure  8.  The relationship between confiningpressure and energy at peak point

    图  不同围压下的花岗岩损伤曲线

    Figure  9.  Damage curves of granite underdifferent confining pressures

    表  1  不同围压下花岗岩的力学性质参数

    Table  1.   Mechanical properties of granite under different confining pressures

    Confining pressure/MPa Peak strain/10−3Peak stress/MPa
    04.603141.784
    55.408241.736
    105.988293.816
    156.852336.105
    207.757391.337
    下载: 导出CSV

    表  2  不同围压下的应力阈值及能量

    Table  2.   Stress threshold and energy under different confining pressures

    The point$\sigma $3/MPa$\sigma $ci/MPa$\sigma $cd/MPaU/MJUe/MJUd/MJ
    Initiation point5157.930.2000.1640.036
    10175.370.2390.1980.041
    15192.830.3070.2440.063
    20235.480.4370.3670.070
    Expansion point5236.710.4320.3800.052
    10279.430.5960.5090.087
    15313.670.8300.6750.155
    20362.731.0860.9100.176
    下载: 导出CSV

    表  3  不同围压下峰值点处的能量

    Table  3.   Energy at peak points under different confining pressures

    Confining pressures/MPaU/MJUe/MJUd/MJUe·U −1Ud·U −1
    00.3860.3200.0660.8290.171
    50.4640.4000.0640.8620.138
    100.7490.5660.1830.7560.244
    151.1280.7770.3510.6880.312
    201.6541.0990.5550.6650.335
    下载: 导出CSV
  • [1] YANG S. Experimental study on deformation, peak strength and crack damage behavior of hollow sandstone under conventional triaxial compression [J]. Engineering Geology, 2016, 213: 11–24. doi: 10.1016/j.enggeo.2016.08.012
    [2] ZHANG M C, NIE R S, LIU X S. Experimental investigation on the influence of water content on the mechanical properties of coal under conventional triaxial compression [J]. Shock and Vibration, 2020: 8872438.
    [3] 陈炳瑞, 魏凡博, 王睿, 等. 西南地区某深埋隧道花岗岩破坏机制与前兆特征研究 [J]. 岩石力学与工程学报, 2020, 39(3): 469–479.

    CHEN B R, WEI F B, WANG R, et al. Failure mechanisms and precursory characteristics of deep buried granite in a tunnel in Southwest China [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 469–479.
    [4] MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643–659.
    [5] ZONG Y, HAN L, WEI J, et al. Mechanical and damage evolution properties of sandstone under triaxial compression [J]. International Journal of Mining Science and Technology, 2016, 26(4): 601–607. doi: 10.1016/j.ijmst.2016.05.011
    [6] 蒲超, 孟陆波, 李天斌. 三轴压缩条件下千枚岩破裂与能量特征研究 [J]. 工程地质学报, 2017, 25(2): 359–366.

    PU C, MENG L B, LI T B. Rupture and energy properties of phyllite under triaxial compression condition [J]. Journal of Engineering Geology, 2017, 25(2): 359–366.
    [7] MIKHALYUK A V, ZAKHAROV V V. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks [J]. Journal of Applied Mechanics and Technical Physics, 1997, 38(2): 312–318. doi: 10.1007/BF02467918
    [8] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [9] 田勇, 俞然刚. 不同围压下灰岩三轴压缩过程能量分析 [J]. 岩土力学, 2014, 35(1): 118–122.

    TIAN Y, YU R G. Energy analysis of limestone during triaxial compression under different confining pressures [J]. Rock and Soil Mechanics, 2014, 35(1): 118–122.
    [10] 于水生, 卢玉斌, 蔡勇. 三轴压缩下花岗岩能量特性研究 [J]. 应用数学和力学, 2015, 36(Supp 1): 147–154.

    YU S S, LU Y B, CAI Y. Study on the energy properties of granite under triaxial compression loading [J]. Applied Mathematics and Mechanics, 2015, 36(Supp 1): 147–154.
    [11] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. doi: 10.1007/s00603-004-0030-7
    [12] 郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究 [J]. 岩石力学与工程学报, 2014, 33(2): 296–308.

    GUO J Q, LIU X L, QIAO C S. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296–308.
    [13] 刘保县, 赵宝云, 姜永东. 单轴压缩煤岩变形损伤及声发射特性研究 [J]. 地下空间与工程学报, 2007(4): 647–650.

    LIU B X, ZHAO B Y, JIANG Y D. Study of deformation-damage and acoustic emission character of coal rock under uniaxial compression [J]. Chinese Journal of Underground Space and Engineering, 2007(4): 647–650.
    [14] 马德鹏, 周岩, 刘传孝, 等. 不同卸围压速率下煤样卸荷破坏能量演化特征 [J]. 岩土力学, 2019, 40(7): 2645–2652.

    MA D P, ZHOU Y, LIU C X, et al. Energy evolution characteristics of coal failure in triaxial tests under different unloading confining pressure rates [J]. Rock and Soil Mechanics, 2019, 40(7): 2645–2652.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  4693
  • HTML全文浏览量:  2056
  • PDF下载量:  55
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-10-22

目录

    /

    返回文章
    返回