Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion
-
摘要: 磁化套筒惯性聚变(MagLIF)结合了传统磁约束聚变(MCF)与惯性约束聚变(ICF)的优势,理论上在有限的驱动能力下可以有效降低聚变实现的难度,具有极大的应用潜力。基于一维集成化物理模型编写了数值模拟程序,以ZR装置典型驱动能力27 MA为出发点,以时间演化为顺序,通过数值模拟系统性地总结分析了典型负载参数下MagLIF构型初始化、加速内爆及迟滞3个关键过程中重要特征参量的分布及演化情况。数值模拟结果有助于理解MagLIF构型从预加热经由燃料压缩到最终发生聚变这一快速而复杂的过程,从而为建立相应的物理图像和认知提供了重要支撑,与传统ICF典型参数的对比也体现了该构型的优势所在,为后续研究奠定了基础。
-
关键词:
- 磁化套筒惯性聚变;惯性约束聚变 /
- 物理过程 /
- 特征参量
Abstract: Magnetized liner inertial fusion (MagLIF) has combined the advantages of the conventional magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), which could reduce the barrier of controlled fusion and has great potential and feasibility for future applications. In this work, a conventional MagLIF configuration is calculated with 27 MA driving current based on one-dimensional simulation code MIST, distributions and evolvement of characteristic parameters (such as density, pressure, temperature and fusion product) are acquired and demonstrated during three stages of MagLIF process, including initialization, implosion and stagnation. The simulation results provide significant data and support for the assessment and analysis of MagLIF process, which would be helpful to understand how MagLIF behaves from preheat through compression into fusion. Comparison of key parameters between MagLIF and traditional ICF also be shown in this work. -
表 1 MagLIF与传统激光ICF典型参数对比
Table 1. Comparison of key parameters between MagLIF and traditional ICF
Configuration Driving pressure/TPa Implosion velocity/(km·s−1) Compression ratio Volume ratio Traditional ICF(spherical) 14−16 350−380 35−45 43 000−91 000 MagLIF(cylindrical) About 160 79 14.7 210 Fuel$\;\rho $R/(g·cm−2) Hall parameter BR/(T·cm−1) Burning time/ns Ion temperature > 0.3 0.15−0.20 > 4 About 0.009 400 > 45 3.0 > 7 -
[1] AYMAR R. The ITER project [J]. IEEE Transactions on Plasma Science, 1998, 25(6): 1187–1195. [2] SHIMOMURA Y, SPEARS W. Review of the ITER project [J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1369–1375. doi: 10.1109/TASC.2004.830580 [3] HUANG C, LI L. Magnetic confinement fusion: a brief review [J]. Frontiers in Energy, 2018, 12(2): 305–313. doi: 10.1007/s11708-018-0539-1 [4] HURRICANE O A, SPRINGER P T, PATEL P K, et al. Approaching a burning plasma on the NIF [J]. Physics of Plasmas, 2019, 26(5): 052704. doi: 10.1063/1.5087256 [5] MCCRORY R L, MEYERHOFER D D, BETTI R, et al. Progress in direct-drive inertial confinement fusion [J]. Physics of Plasmas, 2008, 15(5): 055503. doi: 10.1063/1.2837048 [6] ROSEN, M D. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutorial [J]. Physics of Plasmas, 1999, 6(5): 1690–1699. doi: 10.1063/1.873427 [7] SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 263–52. [8] HARVEY-THOMPSON A J, GEISSEL M, JENNINGS C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy [J]. Physics of Plasmas, 2019, 26(3): 032707. [9] PARADELA J, GARCÍA-RUBIO F, SANZ J. Alpha heating enhancement in MagLIF targets: a simple analytic model [J]. Physics of Plasmas, 2019, 26(1): 012705. doi: 10.1063/1.5079519 [10] PERKINS L J, LOGAN B G, ZIMMERMAN G B, et al. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields [J]. Physics of Plasmas, 2013, 20(7): 3224–3267. [11] SLUTZ S A, VESEY R A. High-gain magnetized inertial fusion [J]. Physical Review Letters, 2012, 108(2): 025003. doi: 10.1103/PhysRevLett.108.025003 [12] SEFKOW A B, SLUTZ S A, KONING J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility [J]. Physics of Plasmas, 2014, 21(7): 956. [13] SINARS D B, SLUTZ S A. Magnetized liner inertial fusion (MagLIF): the promise and challenges [C]//MagLIF Workshop, Albuquerque, 2012. [14] GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion [J]. Physical Review Letters, 2014, 113(15): 155003. doi: 10.1103/PhysRevLett.113.155003 [15] AWE T J, MCBRIDE R D, JENNINGS C A, et al. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field [J]. Physical Review Letters, 2013, 111(23): 235005. doi: 10.1103/PhysRevLett.111.235005 [16] 赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变一维集成化数值模拟 [J]. 物理学报, 2020, 69: 035203. doi: 10.7498/aps.69.20191411ZHAO H L, XIAO B, WANG G H, et al. One-dimensional integrated simulations of magnetized liner inertial fusion [J]. Acta Physica Sinica, 2020, 69: 035203. doi: 10.7498/aps.69.20191411 [17] ATZENI S, JÜRGEN M. The physics of inertial fusion [J]. Plasma Physics & Controlled Fusion, 2004, 46(46): 1805–1805. [18] STACEY W M. Fusion plasma analysis [M]. Wiley, 1981: 231. [19] BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry [J]. Nuclear Fusion, 2002, 40(1): 196–200.