磁化套筒惯性聚变典型物理过程及特征参量

赵海龙 王刚华 肖波 段书超

赵海龙, 王刚华, 肖波, 段书超. 磁化套筒惯性聚变典型物理过程及特征参量[J]. 高压物理学报, 2021, 35(2): 023301. doi: 10.11858/gywlxb.20200619
引用本文: 赵海龙, 王刚华, 肖波, 段书超. 磁化套筒惯性聚变典型物理过程及特征参量[J]. 高压物理学报, 2021, 35(2): 023301. doi: 10.11858/gywlxb.20200619
ZHAO Hailong, WANG Ganghua, XIAO Bo, DUAN Shuchao. Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 023301. doi: 10.11858/gywlxb.20200619
Citation: ZHAO Hailong, WANG Ganghua, XIAO Bo, DUAN Shuchao. Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 023301. doi: 10.11858/gywlxb.20200619

磁化套筒惯性聚变典型物理过程及特征参量

doi: 10.11858/gywlxb.20200619
基金项目: 国家自然科学基金(11205145)
详细信息
    作者简介:

    赵海龙(1985-),男,博士研究生,助理研究员,主要从事磁流体理论与数值模拟研究. E-mail:ifp.zhaohailong@qq.com

  • 中图分类号: O539

Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion

  • 摘要: 磁化套筒惯性聚变(MagLIF)结合了传统磁约束聚变(MCF)与惯性约束聚变(ICF)的优势,理论上在有限的驱动能力下可以有效降低聚变实现的难度,具有极大的应用潜力。基于一维集成化物理模型编写了数值模拟程序,以ZR装置典型驱动能力27 MA为出发点,以时间演化为顺序,通过数值模拟系统性地总结分析了典型负载参数下MagLIF构型初始化、加速内爆及迟滞3个关键过程中重要特征参量的分布及演化情况。数值模拟结果有助于理解MagLIF构型从预加热经由燃料压缩到最终发生聚变这一快速而复杂的过程,从而为建立相应的物理图像和认知提供了重要支撑,与传统ICF典型参数的对比也体现了该构型的优势所在,为后续研究奠定了基础。

     

  • 图  95 kV充电电压下ZR装置驱动电流随时间演化曲线[7]

    Figure  1.  Driving current from ZR facility with charging 95 kV voltage[7]

    图  典型MagLIF负载参数示意图

    Figure  2.  Schematic of typical MagLIF designs

    图  计算得到各格点位置随时间演化曲线

    Figure  3.  Calculated grid positions evolving with time

    图  将燃料平均预加热至250 eV示意图及温度分布

    Figure  4.  Method and temperature distribution of uniform preheating until 250 eV

    图  其他预加热方式下燃料的温度分布

    Figure  5.  Temperature distribution of other preheat temperature methods

    图  燃料与套筒交界面速度随时间演化曲线

    Figure  6.  Velocity of fuel-liner interface evolving with time

    图  预加热后不同时刻燃料中的压力分布

    Figure  7.  Distributions of pressure in fuel at different time short after preheat

    图  内爆压缩阶段典型参量的分布曲线

    Figure  8.  Distributions of characteristic parameters in fuel at different times during implosion stage

    图  迟滞阶段示意图和燃料半径随时间演化

    Figure  9.  Schematic of stagnation and fuel radius evolving with time

    图  10  聚变产额、内能及聚变反应功率随时间演化

    Figure  10.  Fuel internal energy, fusion yield and power evolving with time

    图  11  迟滞时刻的典型物理参量分布

    Figure  11.  Distributions of characteristic parameters in fuel at stagnation times

    图  12  磁化参数和燃料温度随时间的演化

    Figure  12.  Schematic of BR and fuel temperature evolving with time

    图  13  f(xe)和霍尔参量xe随时间的演化曲线

    Figure  13.  f(xe) and hall parameter xe evolving with time

    表  1  MagLIF与传统激光ICF典型参数对比

    Table  1.   Comparison of key parameters between MagLIF and traditional ICF

    Configuration Driving pressure/TPaImplosion velocity/(km·s−1)Compression ratioVolume ratio
    Traditional ICF(spherical)14−16350−38035−4543 000−91 000
    MagLIF(cylindrical)About 1607914.7210
    Fuel$\;\rho $R/(g·cm−2)Hall parameterBR/(T·cm−1)Burning time/nsIon temperature
    > 0.30.15−0.20 > 4
    About 0.009400 > 453.0 > 7
    下载: 导出CSV
  • [1] AYMAR R. The ITER project [J]. IEEE Transactions on Plasma Science, 1998, 25(6): 1187–1195.
    [2] SHIMOMURA Y, SPEARS W. Review of the ITER project [J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1369–1375. doi: 10.1109/TASC.2004.830580
    [3] HUANG C, LI L. Magnetic confinement fusion: a brief review [J]. Frontiers in Energy, 2018, 12(2): 305–313. doi: 10.1007/s11708-018-0539-1
    [4] HURRICANE O A, SPRINGER P T, PATEL P K, et al. Approaching a burning plasma on the NIF [J]. Physics of Plasmas, 2019, 26(5): 052704. doi: 10.1063/1.5087256
    [5] MCCRORY R L, MEYERHOFER D D, BETTI R, et al. Progress in direct-drive inertial confinement fusion [J]. Physics of Plasmas, 2008, 15(5): 055503. doi: 10.1063/1.2837048
    [6] ROSEN, M D. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutorial [J]. Physics of Plasmas, 1999, 6(5): 1690–1699. doi: 10.1063/1.873427
    [7] SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 263–52.
    [8] HARVEY-THOMPSON A J, GEISSEL M, JENNINGS C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy [J]. Physics of Plasmas, 2019, 26(3): 032707.
    [9] PARADELA J, GARCÍA-RUBIO F, SANZ J. Alpha heating enhancement in MagLIF targets: a simple analytic model [J]. Physics of Plasmas, 2019, 26(1): 012705. doi: 10.1063/1.5079519
    [10] PERKINS L J, LOGAN B G, ZIMMERMAN G B, et al. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields [J]. Physics of Plasmas, 2013, 20(7): 3224–3267.
    [11] SLUTZ S A, VESEY R A. High-gain magnetized inertial fusion [J]. Physical Review Letters, 2012, 108(2): 025003. doi: 10.1103/PhysRevLett.108.025003
    [12] SEFKOW A B, SLUTZ S A, KONING J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility [J]. Physics of Plasmas, 2014, 21(7): 956.
    [13] SINARS D B, SLUTZ S A. Magnetized liner inertial fusion (MagLIF): the promise and challenges [C]//MagLIF Workshop, Albuquerque, 2012.
    [14] GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion [J]. Physical Review Letters, 2014, 113(15): 155003. doi: 10.1103/PhysRevLett.113.155003
    [15] AWE T J, MCBRIDE R D, JENNINGS C A, et al. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field [J]. Physical Review Letters, 2013, 111(23): 235005. doi: 10.1103/PhysRevLett.111.235005
    [16] 赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变一维集成化数值模拟 [J]. 物理学报, 2020, 69: 035203. doi: 10.7498/aps.69.20191411

    ZHAO H L, XIAO B, WANG G H, et al. One-dimensional integrated simulations of magnetized liner inertial fusion [J]. Acta Physica Sinica, 2020, 69: 035203. doi: 10.7498/aps.69.20191411
    [17] ATZENI S, JÜRGEN M. The physics of inertial fusion [J]. Plasma Physics & Controlled Fusion, 2004, 46(46): 1805–1805.
    [18] STACEY W M. Fusion plasma analysis [M]. Wiley, 1981: 231.
    [19] BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry [J]. Nuclear Fusion, 2002, 40(1): 196–200.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  4492
  • HTML全文浏览量:  1931
  • PDF下载量:  27
出版历程
  • 收稿日期:  2020-09-24
  • 修回日期:  2020-10-19

目录

    /

    返回文章
    返回