浅埋三舱管廊甲烷爆炸的地面响应规律

王桂林 欧阳啸天 翟俊 孙帆

王桂林, 欧阳啸天, 翟俊, 孙帆. 浅埋三舱管廊甲烷爆炸的地面响应规律[J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
引用本文: 王桂林, 欧阳啸天, 翟俊, 孙帆. 浅埋三舱管廊甲烷爆炸的地面响应规律[J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
WANG Guilin, OUYANG Xiaotian, ZHAI Jun, SUN Fan. Ground Response Law of Methane Explosion in Shallow Buried Three-Cabin Pipe Gallery[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
Citation: WANG Guilin, OUYANG Xiaotian, ZHAI Jun, SUN Fan. Ground Response Law of Methane Explosion in Shallow Buried Three-Cabin Pipe Gallery[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616

浅埋三舱管廊甲烷爆炸的地面响应规律

doi: 10.11858/gywlxb.20200616
基金项目: 国家重点研发计划(2018YFB2101000)
详细信息
    作者简介:

    王桂林(1970-),男,博士,教授,主要从事岩土工程研究. E-mail:glw@cqu.edu.cn

    通讯作者:

    王桂林(1970-),男,博士,教授,主要从事岩土工程研究. E-mail:glw@cqu.edu.cn

  • 中图分类号: O382

Ground Response Law of Methane Explosion in Shallow Buried Three-Cabin Pipe Gallery

  • 摘要: 地下综合管廊可燃性气体爆炸事故时有发生,给地面人员的生命和财产造成了巨大损失。依托重庆市某地下综合管廊试点工程,基于物质点法,采用点火增长模型模拟浅埋管廊泄漏甲烷气体爆炸冲击管廊本体结构和围岩的过程,研究爆炸作用下地面压强与位移的响应特性。研究发现:泄爆作用下管廊及围岩会出现因接触面反射和折射产生的次生应力波,管廊横向方向次生波振幅随距起爆点水平距离的增大而增大,而管廊纵向方向产生的次生波振幅较小,且随距离增大变化较小;爆炸作用造成整体地面沉降,但在起爆点中心附近地面隆起,这种隆起由管廊本体结构破裂,气体直接冲击岩土体形成的剧烈隆起和管廊整体震动形成的轻微隆起两部分组成。

     

  • 图  2014年高雄地下丙烯管道爆炸现场[1]

    Figure  1.  Explosion scene of the underground propylene pipeline in Kaohsiung in 2014[1]

    图  多物体接触计算示意图

    Figure  2.  Schematic diagram of multi-object contact algorithm

    图  某地下综合管廊现场照片

    Figure  3.  Picture of an underground comprehensive pipe gallery

    图  数值模拟模型内部示意图

    Figure  4.  Internal schematic diagram of numerical simulation model

    图  模型截面示意图

    Figure  5.  Model section schematic

    图  爆炸后不同时刻地面压强分布

    Figure  6.  Distribution of ground pressure at different times after explosion

    图  管廊横向质点压强随时间变化曲线

    Figure  7.  Variation curves of particle pressure in the horizontal direction of pipe gallery with time

    图  管廊横向质点压强峰值随起爆点距离的变化

    Figure  8.  Peak particle pressure in the horizontal direction of pipe gallery with distance of initiation point

    图  管廊纵向质点压强随时间变化曲线

    Figure  9.  Variation curves of particle pressure in the longitudinal direction of the pipe gallery with time

    图  10  管廊纵向质点压强峰值随起爆点距离变化

    Figure  10.  Peak particle pressure of the pipe gallery with the distance of the initiation point in the longitudinal direction

    图  11  不同时刻地面竖向位移响应分布情况

    Figure  11.  Distribution of ground vertical displacement at different times

    图  12  管廊纵向质点竖向位移随时间变化曲线

    Figure  12.  Variation curves of vertical displacement of particles in the longitudinal direction of pipe gallery with time

    图  13  管廊纵向质点相对竖向位移随起爆点距离的变化

    Figure  13.  Relative vertical displacement of particlesin the longitudinal direction of pipe gallerywith distance of initiation point

    图  14  管廊横向质点相对竖向位移随时间变化曲线

    Figure  14.  Variation curves of relative vertical displacement of particles in the horizontal direction of pipe gallery with time

    图  15  管廊横向质点相对竖向位移随距起爆点距离变化

    Figure  15.  Rrelative vertical displacement of particles in the horizontal direction of pipe gallery with distance of initiation point

    表  1  围岩和管廊本体结构力学参数

    Table  1.   Mechanical parameters of surrounding rock and pipe gallery structure

    Component$\;\rho $/(kg·m–3)E/GPa$\nu$$\sigma_{\rm{t}}$/MPa$q_\varphi$$K_\varphi$$\psi $
    Surrounding rock2 10040.30.0010.2121 1190
    Pipe gallery structure2 600300.22.0000.607.18 × 1060
    下载: 导出CSV

    表  2  甲烷-空气混合气体高能燃烧模型计算参数

    Table  2.   Calculation parameters of high-energy combustion model of methane-air mixture

    Component$\gamma $E0/(MJ·m–3)$\;\rho $/(kg·m–3)D/(m·s–1)Vf/%pCJ/MPa
    CH4-Air1.2823.7751.192 7859.51.9
    下载: 导出CSV

    表  3  数值模拟验证结果

    Table  3.   Numerical simulation verification results

    Position/mPressure/kPa$\delta $/%Position/mPressure/kPa$\delta $/%
    ExperimentSimulationExperimentSimulation
    20145.33153.685.75200147.33164.3211.53
    60165.67180.328.84280137.67148.027.52
    80169.67181.947.23340136.00147.618.54
    120154.00169.219.88380129.00145.2712.61
    下载: 导出CSV
  • [1] 张越. 高雄前镇区多条街道发生燃气爆炸, 消防车被炸毁[N/OL]. [2014–08–01]. http://www.chinanews.com/tp/hd2011/2014/08-01/384708.shtml.

    ZHANG Y. A gas explosion occurred in several streets in the former town of Kaohsiung, and fire trucks were blown up [N/OL]. [2014–08–01]. http://www.chinanews.com/tp/hd2011/2014/08-01/384708.shtml.
    [2] 王玉琪. 地下综合管廊内燃气泄露及爆炸的数值研究[D]. 北京: 北京建筑大学, 2019.

    WANG Y Q. Numerical research on gas leakage and explosion in underground utility tunnel [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019.
    [3] 杨炀. 城市地下综合管廊燃气爆炸防护措施设计研究[D]. 石家庄: 石家庄铁道大学, 2019.

    YANG Y. Design and research on gas explosion protection measures for urban underground integrated pipe gallery [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019.
    [4] 曲树盛, 李忠献. 地铁车站内爆炸波的传播规律与超压荷载 [J]. 工程力学, 2010, 27(9): 240–247.

    QU S S, LI Z X. Propagation law and overpressure load of blast wave inside subway station [J]. Engineering Mechanics, 2010, 27(9): 240–247.
    [5] 廖维张, 杜修力. 爆炸波在地铁车站中的传播规律研究 [J]. 防灾减灾工程学报, 2010, 30(5): 538–543.

    LIAO W Z, DU X L. Study on propagation regularity of blast wave in subway station [J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(5): 538–543.
    [6] 廖维张, 杜修力. 内部爆炸作用下地铁车站的动力响应分析 [J]. 地下空间与工程学报, 2010, 6(5): 980–985.

    LIAO W Z, DU X L. Dynamic responses of subway station under the internal blast loads [J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 980–985.
    [7] 田力, 高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究 [J]. 工程力学, 2011, 28(11): 114–123.

    TIAN L, GAO F H. Dynamic response of the multi-storey building subjected to blast loading in underground tunnel [J]. Engineering Mechanics, 2011, 28(11): 114–123.
    [8] 张雄, 廉艳平, 刘岩, 等. 物质点法[M]. 北京: 清华大学出版社, 2013: 7, 31–32.

    ZHANG X, LIAN Y P, LIU Y, et al. Material point method [M]. Beijing: Tsinghua University Press, 2013: 7, 31–32.
    [9] 陈卫东, 杨文淼, 张帆. 基于物质点法的水下爆炸冲击波数值模拟 [J]. 高压物理学报, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004

    CHEN W D, YANG W M, ZHANG F. Material point method for numerical simulation of underwater explosion blast wave [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004
    [10] 王宇新, 陈震, 张洪武, 等. 多层抗爆结构冲击响应无网格MPM法分析 [J]. 工程力学, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032

    WANG Y X, CHEN Z, ZHANG H W, et al. Response of multi-layered structure due to impact load using material point method [J]. Engineering Mechanics, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032
    [11] 王宇新, 陈震, 孙明, 等. 多相介质爆炸冲击响应物质点法数值模拟 [J]. 爆炸与冲击, 2008, 28(2): 154–160. doi: 10.3321/j.issn:1001-1455.2008.02.010

    WANG Y X, CHEN Z, SUN M, et al. Simulation of explosion and shock involving multiple materials based on the material point method [J]. Explosion and Shock Waves, 2008, 28(2): 154–160. doi: 10.3321/j.issn:1001-1455.2008.02.010
    [12] 缪玉松, 李晓杰, 王宇新, 等. 物质点法在爆轰波碰撞炸药猛度试验中应用 [J]. 大连理工大学学报, 2017, 57(3): 227–232. doi: 10.7511/dllgxb201703002

    MIAO Y S, LI X J, WANG Y X, et al. Application of material point method to explosive brisance tests with detonation wave collision [J]. Journal of Dalian University of Technology, 2017, 57(3): 227–232. doi: 10.7511/dllgxb201703002
    [13] 张芮瑜, 孙玉进, 宋二祥. 强夯的物质点法模拟及其能量转化规律分析 [J]. 岩土工程学报, 2019, 41(7): 1208–1216.

    ZHANG R Y, SUN Y J, SONG E X. Simulation of dynamic compaction using material point method and analysis of its energy conversion law [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1208–1216.
    [14] 董友扣, 马家杰, 王栋, 等. 深海滑坡灾害的物质点法模拟 [J]. 海洋工程, 2019, 37(5): 141–147.

    DONG Y K, MA J J, WANG D, et al. Investigation of landslide in deep sea using material point method [J]. The Ocean Engineering, 2019, 37(5): 141–147.
    [15] BARDENHAGEN S G, BRACKBILL J U, SULSKY D. The material-point method for granular materials [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3/4): 529–541.
    [16] VONNEUMANN J, RICHTMYER R D. A method for the numerical calculation of hydrodynamic shocks [J]. Journal of Applied Physics, 1950, 21(3): 232–237. doi: 10.1063/1.1699639
    [17] ZHU Y F, WANG D M, SHAO Z L, et al. Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels [J]. Process Safety and Environmental Protection, 2020, 135: 101–112. doi: 10.1016/j.psep.2019.12.022
    [18] 曹祝. 气相爆炸冲击问题的物质点法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    CAO Z. Research on material point method for gas explosion shock problems [D]. Harbin: Harbin Engineering University, 2018.
    [19] XU J D, XU S L, ZHANG Y L, et al. Study on the development of the medium-scale gas explosion integrated testing system [J]. Procedia Engineering, 2011, 26: 1305–1313. doi: 10.1016/j.proeng.2011.11.2305
    [20] QU M Z. Numerical study on shock wave propagation with obstacles during methane explosion [J]. Applied Mechanics and Materials, 2010, 33(9): 114–118.
    [21] ZHANG S H, ZHANG Q. Effect of vent size on vented hydrogen-air explosion [J]. International Journal of Hydrogen Energy, 2018, 43(37): 17788–17799. doi: 10.1016/j.ijhydene.2018.07.194
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  4425
  • HTML全文浏览量:  1849
  • PDF下载量:  31
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-10-15

目录

    /

    返回文章
    返回