[1] |
LAKES R. Foam structures with a negative Poisson’s ratio [J]. Science, 1987, 235(4792): 1038–1040. doi: 10.1126/science.235.4792.1038
|
[2] |
ALDERSON A, EVANS K E. Microstructural modelling of auxetic microporous polymers [J]. Journal of Materials Science, 1995, 30(13): 3319–3332. doi: 10.1007/BF00349875
|
[3] |
MILLER W, SMITH C W, EVANS K E. Honeycomb cores with enhanced buckling strength [J]. Composite Structures, 2011, 93(3): 1072–1077. doi: 10.1016/j.compstruct.2010.09.021
|
[4] |
LAKES R. Deformation mechanisms in negative Poisson’s ratio materials: structural aspects [J]. Journal of Materials Science, 1991, 26(9): 2287–2292. doi: 10.1007/BF01130170
|
[5] |
任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展 [J]. 力学学报, 2019, 51(3): 656–689. doi: 10.6052/0459-1879-18-381REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656–689. doi: 10.6052/0459-1879-18-381
|
[6] |
马芳武, 梁鸿宇, 赵颖, 等. 内凹三角形负泊松比材料的面内冲击动力学性能 [J]. 振动与冲击, 2019, 38(17): 81–87.MA F W, LIANG H Y, ZHAO Y, et al. In-plane impact dynamic performance of re-entrant triangle material with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2019, 38(17): 81–87.
|
[7] |
ZHANG J J, LU G X, RUAN D, et al. Tensile behavior of an auxetic structure: analytical modeling and finite element analysis [J]. International Journal of Mechanical Science, 2018, 136: 143–154. doi: 10.1016/j.ijmecsci.2017.12.029
|
[8] |
LI D, YIN J H, DONG L, et al. Strong re-entrant cellular structures with negative Poisson’s ratio [J]. Journal of Materials Science, 2017, 53(5): 3493–3499.
|
[9] |
HOU J H, LI D, DONG L. Mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio [J]. Journal of Materials Science, 2018, 53(14): 10209–10216. doi: 10.1007/s10853-018-2298-0
|
[10] |
邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析 [J]. 振动与冲击, 2017, 36(13): 103–109.DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2017, 36(13): 103–109.
|
[11] |
崔世堂, 王波, 张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究 [J]. 应用力学学报, 2017, 34(5): 919–924.CUI S T, WANG B, ZHANG K. Mechanical behavior and energy absorption of honeycomb with negative Poisson’s ratio under in-plane dynamic compression [J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 919–924.
|
[12] |
陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性 [J]. 高压物理学报, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759CHEN P, HOU X H, ZHANG K. Impact resistance of semi re-entrant honeycombs under in-plane dynamic crushing [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759
|
[13] |
HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation [J]. Thin Walled Structures, 2018, 131: 373–384.
|
[14] |
ZHANG X C, DING H M, AN L Q, et al. Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles [J]. Advances in Mechanical Engineering, 2015, 7(2): 679678. doi: 10.1155/2014/679678
|
[15] |
LI Z, WANG T, JIANG Y, et al. Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression [J]. Composite Structures, 2017, 187: 429–438.
|
[16] |
LI Z, GAO Q, YANG S, et al. Comparative study of the in-plane uniaxial and biaxial crushing of hexagonal, re-entrant, and mixed honeycombs [J]. Journal of Sandwich Structures and Materials, 2019, 21(6): 1991–2013. doi: 10.1177/1099636218755294
|
[17] |
AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids & Structures, 2011, 48(3/4): 506–516.
|
[18] |
ALKHADER M, VURAL M. Mechanical response of cellular solids: role of cellular topology and microstructural irregularity [J]. International Journal of Engineering Science, 2008, 46(10): 1035–1051. doi: 10.1016/j.ijengsci.2008.03.012
|
[19] |
LIU W, WANG N, LUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure [J]. Materials & Design, 2016, 100: 84–91.
|
[20] |
ZHENG Z, YU J, LI J. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/4): 650–664.
|
[21] |
ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs [J]. Journal of the Mechanics & Physics of Solids, 2001, 49(4): 857–870.
|