内凹负泊松比蜂窝结构的面内双轴冲击响应

姚永永 苏步云 肖革胜 许海涛 树学峰

姚永永, 苏步云, 肖革胜, 许海涛, 树学峰. 内凹负泊松比蜂窝结构的面内双轴冲击响应[J]. 高压物理学报, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
引用本文: 姚永永, 苏步云, 肖革胜, 许海涛, 树学峰. 内凹负泊松比蜂窝结构的面内双轴冲击响应[J]. 高压物理学报, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
YAO Yongyong, SU Buyun, XIAO Gesheng, XU Haitao, SHU Xuefeng. In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
Citation: YAO Yongyong, SU Buyun, XIAO Gesheng, XU Haitao, SHU Xuefeng. In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610

内凹负泊松比蜂窝结构的面内双轴冲击响应

doi: 10.11858/gywlxb.20200610
基金项目: 国家自然科学基金(11772217,11802198);山西省自然科学基金(201801D221026)
详细信息
    作者简介:

    姚永永(1994-),男,硕士研究生,主要从事弹塑性力学研究. E-mail:1740909831@qq.com

    通讯作者:

    树学峰(1964-),男,博士,教授,主要从事弹塑性力学研究. E-mail:shuxuefeng@tyut.edu.cn

  • 中图分类号: O347.3

In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb

  • 摘要: 利用有限元模拟方法研究了内凹负泊松比蜂窝结构的面内双轴冲击响应。用节点扰动方法建立了具有不同规则度的内凹负泊松比蜂窝结构,并将其在不同冲击速度下的变形模态、应力-应变曲线和能量耗散能力与规则蜂窝进行了对比分析。结果表明,冲击速度是内凹蜂窝结构变形模态最主要的影响因素。此外,在双轴冲击下,由于不规则度的引入,延长了应力-应变曲线的平台阶段,抑制了结构的各向异性程度,从而使结构的变形特征从局部密实转向整体密实。在能量吸收能力方面,结构的不规则性导致了密实化阶段的滞后,因此在相同的压缩程度下,其塑性耗散能低于规则模型。

     

  • 图  坐标扰动

    Figure  1.  Coordinate perturbation

    图  不规则蜂窝模型的建立

    Figure  2.  Establishment of irregular honeycomb model

    图  双轴加载模型的边界条件

    Figure  3.  Boundary conditions for the biaxial loading model

    图  基体材料的本构关系

    Figure  4.  Constitutive relation of the matrix material

    图  K = 0时不同冲击速度下的变形模态

    Figure  5.  Deformation modes under different impact velocities at K = 0

    图  K = 0.6时不同冲击速度下的变形模态

    Figure  6.  Deformation modes under different impact velocities at K = 0.6

    图  K = 1.0时不同冲击速度下的变形模态

    Figure  7.  Deformation modes under different impact velocities at K = 1.0

    图  蜂窝结构在不同冲击速度下x方向的应力-应变曲线

    Figure  8.  Stress-strain curves of honeycomb structure in x direction under different impact velocities

    图  蜂窝结构在不同冲击速度下y方向上的应力-应变曲线

    Figure  9.  Stress-strain curves of honeycomb structure in y direction under different impact velocities

    图  10  不同冲击速度下不规则内凹蜂窝结构在xy方向的平台应力比较

    Figure  10.  Comparison of the plateau stress of irregular re-entrant honeycomb structures in x and y directions under different velocities

    图  11  蜂窝结构在不同冲击速度下的比塑性耗散能曲线

    Figure  11.  Specific plastic dissipation energy curves of honeycomb structure at different impact velocities

  • [1] LAKES R. Foam structures with a negative Poisson’s ratio [J]. Science, 1987, 235(4792): 1038–1040. doi: 10.1126/science.235.4792.1038
    [2] ALDERSON A, EVANS K E. Microstructural modelling of auxetic microporous polymers [J]. Journal of Materials Science, 1995, 30(13): 3319–3332. doi: 10.1007/BF00349875
    [3] MILLER W, SMITH C W, EVANS K E. Honeycomb cores with enhanced buckling strength [J]. Composite Structures, 2011, 93(3): 1072–1077. doi: 10.1016/j.compstruct.2010.09.021
    [4] LAKES R. Deformation mechanisms in negative Poisson’s ratio materials: structural aspects [J]. Journal of Materials Science, 1991, 26(9): 2287–2292. doi: 10.1007/BF01130170
    [5] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展 [J]. 力学学报, 2019, 51(3): 656–689. doi: 10.6052/0459-1879-18-381

    REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656–689. doi: 10.6052/0459-1879-18-381
    [6] 马芳武, 梁鸿宇, 赵颖, 等. 内凹三角形负泊松比材料的面内冲击动力学性能 [J]. 振动与冲击, 2019, 38(17): 81–87.

    MA F W, LIANG H Y, ZHAO Y, et al. In-plane impact dynamic performance of re-entrant triangle material with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2019, 38(17): 81–87.
    [7] ZHANG J J, LU G X, RUAN D, et al. Tensile behavior of an auxetic structure: analytical modeling and finite element analysis [J]. International Journal of Mechanical Science, 2018, 136: 143–154. doi: 10.1016/j.ijmecsci.2017.12.029
    [8] LI D, YIN J H, DONG L, et al. Strong re-entrant cellular structures with negative Poisson’s ratio [J]. Journal of Materials Science, 2017, 53(5): 3493–3499.
    [9] HOU J H, LI D, DONG L. Mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio [J]. Journal of Materials Science, 2018, 53(14): 10209–10216. doi: 10.1007/s10853-018-2298-0
    [10] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析 [J]. 振动与冲击, 2017, 36(13): 103–109.

    DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2017, 36(13): 103–109.
    [11] 崔世堂, 王波, 张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究 [J]. 应用力学学报, 2017, 34(5): 919–924.

    CUI S T, WANG B, ZHANG K. Mechanical behavior and energy absorption of honeycomb with negative Poisson’s ratio under in-plane dynamic compression [J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 919–924.
    [12] 陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性 [J]. 高压物理学报, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759

    CHEN P, HOU X H, ZHANG K. Impact resistance of semi re-entrant honeycombs under in-plane dynamic crushing [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759
    [13] HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation [J]. Thin Walled Structures, 2018, 131: 373–384.
    [14] ZHANG X C, DING H M, AN L Q, et al. Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles [J]. Advances in Mechanical Engineering, 2015, 7(2): 679678. doi: 10.1155/2014/679678
    [15] LI Z, WANG T, JIANG Y, et al. Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression [J]. Composite Structures, 2017, 187: 429–438.
    [16] LI Z, GAO Q, YANG S, et al. Comparative study of the in-plane uniaxial and biaxial crushing of hexagonal, re-entrant, and mixed honeycombs [J]. Journal of Sandwich Structures and Materials, 2019, 21(6): 1991–2013. doi: 10.1177/1099636218755294
    [17] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids & Structures, 2011, 48(3/4): 506–516.
    [18] ALKHADER M, VURAL M. Mechanical response of cellular solids: role of cellular topology and microstructural irregularity [J]. International Journal of Engineering Science, 2008, 46(10): 1035–1051. doi: 10.1016/j.ijengsci.2008.03.012
    [19] LIU W, WANG N, LUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure [J]. Materials & Design, 2016, 100: 84–91.
    [20] ZHENG Z, YU J, LI J. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/4): 650–664.
    [21] ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs [J]. Journal of the Mechanics & Physics of Solids, 2001, 49(4): 857–870.
  • 加载中
图(11)
计量
  • 文章访问数:  4249
  • HTML全文浏览量:  1966
  • PDF下载量:  39
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2020-09-27
  • 发布日期:  2021-08-25

目录

    /

    返回文章
    返回