Research on the Ballistic Performance of Cement Mortar
-
摘要: 对于水泥砂浆的抗弹性能研究,目前很少考虑靶体所处的应力状态,为此基于自研的真三轴静载混凝土侵彻实验装置和水泥砂浆抗弹性能实验结果,讨论了水泥砂浆在不同应力状态下的开坑深度和开坑阻力。应用侵彻深度的经验公式和基于HJC模型的有限元数值计算方法,对比分析了水泥砂浆侵彻实验,结果表明,对于低速冲击过程,采用UMIST公式和HJC模型的数值分析对开坑深度的预测较为有效。应力状态对开坑深度有明显的影响,即随着侧限增加,水泥砂浆的三轴强度提高,弹丸的开坑深度减小。应用基于HJC模型的数值分析方法,研究了弹丸开坑过程中弹体内的加速度波形和y轴支撑杆上的波形,结果表明:弹丸开坑过程对两种波形都有影响,其中y轴支撑杆上的波形可以更好地反映开坑过程。虽然数值模拟结果与实验波形的趋势基本一致,但是应力幅值有一定的差异,说明基于HJC模型的数值分析对开坑阻力的计算能力尚待提高。Abstract: The stress state of the target was seldom taken into account in the investigation of the ballistic performance of cement mortar. Based on the self-developed penetration experimental system of concrete under true-triaxial confinement and the experimental results of the anti-bullet performance of cement mortar, the depth and resistance of opening pit under different stress states were discussed in the present paper. The empirical formula of penetration depth and finite element method (FEM) based on HJC model were used to analyze the penetration behaviors of cement mortar results. The results showed that under the lower velocity impact, the UMIST formula and the HJC model were both effective in the prediction of pit depth. At the same time, the stress state had an obvious influence on pit depth. With the increase of the lateral limit, the cement mortar strength increases and the pit depth of the projectile decreases. The acceleration wave in bullet and the wave in the y-axis support rod were calculated by FEM based on HJC model. The results showed that the process of projectile opening pit would be recorded by these two waveforms, and the wave structure in the y-axis support rod would be more significantly. Although the tendency of the simulation results was basically consistent with the experimental waves, there was difference in the stress amplitude to some degree, which also indicated that the calculation method of the pit opening resistance based on HJC model needed to be improved.
-
Key words:
- ballistic performance /
- pit depth /
- pit resistance /
- cement mortar /
- true-triaxial stress state
-
表 1 水泥砂浆的HJC本构模型参数
Table 1. Parameters of HJC model for cement mortar
${\;\rho {_0} }$/(kg·m−3) $G$/GPa AHJC/GPa BHJC/GPa CHJC NHJC $f{'} $/MPa 1844 1.32 0.66 1.335 0.0018 0.845 14.4 T/MPa ${\dot \varepsilon{_0} }$/s−1 $\varepsilon $f,min Smax ${p{\rm{_c}} }$/MPa ${\;\mu {\rm{_c}} }$ ${p{\rm{_l} } }$/GPa 2.0 1 0.01 80.24 13.8 0.0075 1.096 ${\;\mu {\rm{_l} } }$ k1/GPa k2/GPa k3/GPa D1 D2 0.15 85 −171 208 0.006629 1.0 表 2 弹丸JC本构模型参数
Table 2. Parameters of JC model of projectile
${\rho{_0} }$/(kg·m−3) G/GPa T0/K c/(J·kg−1·K−1) AJC/MPa BJC/MPa nJC 7830 77 293 477 792 510 0.26 CJC Tm/K d1 d2 d3 d4 d5 0.014 1793 0.05 3.44 −2.12 0.002 0.61 表 3 无量纲侵彻深度公式参数
Table 3. Formula parameters of dimensionless penetration depth
Stress state k0 m1 m2 m3 No confinement 0.90 0.70 1.21 0.60 Unilateral confinement 1.02 0.55 1.25 0.65 Bilateral confinement 1.05 0.40 1.30 0.68 -
[1] 徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06 [2] 徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008 [3] XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. doi: 10.1016/j.mechmat.2019.103220 [4] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. doi: 10.1016/0734-743X(94)80024-4 [5] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. doi: 10.1016/S0734-743X(02)00005-2 [6] CHEN X W, LI J C. Analysis on the resistive force in penetration of a rigid projectile [J]. Defence Technology, 2014, 10(3): 285–293. doi: 10.1016/j.dt.2014.06.007 [7] 沈河涛. 弹丸侵彻混凝土介质效应的研究[D]. 北京: 北京理工大学, 1996.SHEN H T. Study on the effect of projectile penetrating concrete medium [D]. Beijing: Beijing Institute of Technology, 1996. [8] BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2 [9] 薛建锋, 沈培辉, 王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算 [J]. 高压物理学报, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010XUE J F, SHEN P H, WANG X M. Resistance during cratering for projectile penetrating into concrete target [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010 [10] 蒋志刚, 甄明, 刘飞, 等. 钢管约束混凝土抗侵彻机理的数值模拟 [J]. 振动与冲击, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001JIANG Z G, ZHEN M, LIU F, et al. Simulation of anti-penetration mechanism of steel tube confined concrete [J]. Journal of Vibration and Shock, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001 [11] 朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991ZHU X, LU X Z, DU Y F, et al. Experimental study on impact resistance of reinforced conceret columns strengthened with steel jackets [J]. Engineering Mechanics, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991 [12] 甄明, 蒋志刚, 万帆, 等. 钢管约束混凝土抗侵彻性能试验 [J]. 国防科技大学学报, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020ZHEN M, JIANG Z G, WAN F, et al. Steeltube confined concrete targets penetration experiments [J]. Journal of National University of Defense Technology, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020 [13] 蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003MENG C M, SONG D Y, JIANG Z G, et al. Tests for anti-penetration performance of polygonal steel tube-confined concrete targets [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003 [14] 徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034 [15] 陈丽娜, 单俊芳, 周李姜, 等. 应力状态对水泥砂浆侵彻性能的影响 [J]. 振动与冲击, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005CHEN L N, SHAN J F, ZHOU L J, et al. Effects of stress state on penetration performance of cement mortar [J]. Journal of Vibration and Shock, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005 [16] MEYER C S. Development of geomaterial parameters for numerical simulations using the Holmquist-Johnson-Cook constitutive model for concrete: ARL-TR-5556 [R]. Orlando: Army Research Laboratory, 2011. [17] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9 [18] Army Corps of Engineers. Fundamentals of protective design: AT1207821 [R]. Army Corps of Engineers, 1946. [19] National Defense Research Committee. Effects of impact and explosion: summery technical report of division 2 [R]. Washington DC: National Defense Research Committee, 1946. [20] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. doi: 10.1016/0029-5493(76)90015-7 [21] BARR P. Guidelines for the design and assessment of concrete structures subjected to impact [R]. London, UK: UK Atomic Energy Authority, Safety and Reliability Directorate, 1990. [22] YOUNG C W. Penetration equations: SAND 97-2426 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1997. [23] REID S R, WEN H M. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles: UMIST Report ME/AM/02.01/TE/G/018507/Z [R]. Manchester: University of Manchester Institute of Science and Technology, 2001. [24] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. doi: 10.1016/S0734-743X(02)00037-4 [25] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. doi: 10.1016/S0734-743X(02)00108-2 [26] 王琳, 王富耻, 王鲁, 等. 空心弹体垂直侵彻混凝土靶板的应变测试研究 [J]. 北京理工大学学报, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014WANG L, WANG F C, WANG L, et al. Strain measurement in hollow projectiles impacting concrete targets [J]. Journal of Beijing Institute of Technology, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014 [27] 张磊, 任新见, 孔德锋. 钢筋混凝土HJC模型的研究和改进[C]//第四届全国工程安全与防护学术会议. 洛阳, 2014: 134−138.ZHANG L, REN X J, KONG D F. Research and improvement of HJC model of steel reinforced concrete [C]//Proceedings of the 4th National Conference of Engineering Safety and Protection. Luoyang, 2014: 134−138.