不同卸围压速率下花岗岩的力学性质及声发射特征

刘鹏飞 郭佳奇 范俊奇 马兆伟

刘鹏飞, 郭佳奇, 范俊奇, 马兆伟. 不同卸围压速率下花岗岩的力学性质及声发射特征[J]. 高压物理学报, 2021, 35(1): 014102. doi: 10.11858/gywlxb.20200608
引用本文: 刘鹏飞, 郭佳奇, 范俊奇, 马兆伟. 不同卸围压速率下花岗岩的力学性质及声发射特征[J]. 高压物理学报, 2021, 35(1): 014102. doi: 10.11858/gywlxb.20200608
LIU Pengfei, GUO Jiaqi, FAN Junqi, MA Zhaowei. Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014102. doi: 10.11858/gywlxb.20200608
Citation: LIU Pengfei, GUO Jiaqi, FAN Junqi, MA Zhaowei. Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014102. doi: 10.11858/gywlxb.20200608

不同卸围压速率下花岗岩的力学性质及声发射特征

doi: 10.11858/gywlxb.20200608
基金项目: 国家自然科学基金(51778215);中国博士后科学基金(2018M631114)
详细信息
    作者简介:

    刘鹏飞(1996-),男,硕士研究生,主要从事隧道与地下工程研究. E-mail: lpf546@163.com

    通讯作者:

    郭佳奇(1981-),男,博士,副教授,主要从事隧道与地下工程研究. E-mail: gjq519@163.com

  • 中图分类号: O347.1;TU.45

Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures

  • 摘要: 为了研究不同卸围压速率下花岗岩的力学性质,利用RMT-150B岩石力学试验系统对花岗岩试样进行恒轴压卸围压应力路径试验。试验结果表明:相同的初始围压下,随着卸围压速率增大,岩样的延性减小,表现为脆性破坏。卸围压速率越大,卸围压阶段的应变率越高,但总变形量小;当卸围压的速率相同时,初始围压越高,卸围压阶段岩样的应变率和总变形量越大。采用Mogi-Coulomb强度准则对试验结果进行拟合,结果显示:卸围压速率对花岗岩的黏聚力有劣化作用,对岩石的内摩擦角有强化作用;卸围压速率越小,振铃计数的活跃期越长,表明在低卸围压速率下,花岗岩岩样内部损伤发展缓慢且完全。

     

  • 图  标准花岗岩试件

    Figure  1.  Standard granite specimens

    图  RMT-150B岩石力学试验系统

    Figure  2.  RMT-150B rock mechanics test system

    图  不同卸围压速率下花岗岩的应力-应变曲线

    Figure  3.  Stress-strain curves of granite under different release confining pressure rates

    图  卸围压试验中花岗岩的破坏形式

    Figure  4.  Failure patterns of granite in unloading confining pressure tests

    图  不同初始围压、卸荷速率下的应变率变化

    Figure  5.  Variation of strain rate under different initial confining pressure and unloading rate

    图  花岗岩峰值强度-围压线性拟合结果

    Figure  6.  Relationship between peak strengthand confining pressure for granite

    图  花岗岩的Mogi-Coulomb强度曲线

    Figure  7.  Mogi-Coulomb strength curves of granite

    图  不同卸围压速率下花岗岩的黏聚力和摩擦角

    Figure  8.  Cohesions and friction angles of granite under different unloading rates

    图  不同围压和卸荷速率下花岗岩的声发射特性

    Figure  9.  Acoustic emission characteristics of granite under different confining pressure and confining pressure unloading rate

    表  1  两种强度准则的线性拟合结果

    Table  1.   Linear fitting results of two strength criteria

    Conditionv/(MPa·s−1Mohr-Coulomb criteriaMogi-Coulomb criteria
    $\xi $$\sigma\rm{_c }$R2abR2
    Triaxial compression8.749186.480.90047.130.540.977
    Unloading confining pressure0.0027.771135.540.84813.010.740.990
    0.026.581147.510.94317.710.800.995
    0.25.641170.580.96624.170.660.999
    下载: 导出CSV
  • [1] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673. doi: 10.13722/j.cnki.jrme.2019.0103

    FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673. doi: 10.13722/j.cnki.jrme.2019.0103
    [2] 尤明庆. 岩石的力学性质 [M]. 北京: 地质出版社, 2007.

    YOU M Q. Mechanical properties of rocks [M]. Beijing: Geological Publishing House, 2007.
    [3] 刘之喜. 高围压下砂岩循环加-卸载损伤本构及损伤阈值 [J]. 高压物理学报, 2020, 34(4): 044203. doi: 10.11858/gywlxb.20190809

    LIU Z X. Damage constitutive of cyclic loading and damage threshold of rock under high confining pressure [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044203. doi: 10.11858/gywlxb.20190809
    [4] 谢红强, 何江达, 徐进. 岩石加卸载变形特性及力学参数试验研究 [J]. 岩土工程学报, 2003, 25(3): 336–338. doi: 10.3321/j.issn:1000-4548.2003.03.018

    XIE H Q, HE J D, XU J. Deformation characterslics of rock under loading and unloading conditions and experimental study of mechanical parameters [J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 336–338. doi: 10.3321/j.issn:1000-4548.2003.03.018
    [5] 王光勇, 余锐, 马东方, 等. 饱水细砂岩动态抗拉与抗压强度试验对比研究 [J]. 高压物理学报, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857

    WANG G Y, YU R, MA D F, et al. Comparative study on dynamic tensile and compressivestrength of the saturated fine sandstone [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857
    [6] MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643–659. doi: 10.1016/0148-9062(94)90005-1
    [7] 邱士利, 冯夏庭, 张传庆, 等. 不同卸围压速率下深埋大理岩卸荷力学特性试验研究 [J]. 岩石力学与工程学报, 2010, 29(9): 1807–1817.

    QIU S L, FENG X T, ZHANG C Q, et al. Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1807–1817.
    [8] SWANSSON S R, BROWN W S. An observation of loading path independence of fracture in rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 277–278. doi: 10.1016/0148-9062(71)90023-4
    [9] HUANG X, LIU Q S, LIU B, et al. Experimental study on the dilatancy and fracturing behavior of soft rock under unloading conditions [J]. International Journal of Civil Engineering, 2017, 15(6): 921–948. doi: 10.1007/s40999-016-0144-9
    [10] 黄润秋, 黄达. 卸荷条件下花岗岩力学特性试验研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2205–2213. doi: 10.3321/j.issn:1000-6915.2008.11.005

    HUANG R Q, HUANG D. Experimental research on mechanical properties of granites under unloading condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2205–2213. doi: 10.3321/j.issn:1000-6915.2008.11.005
    [11] 张凯, 周辉, 潘鹏志, 等. 不同卸荷速率下岩石强度特性研究 [J]. 岩土力学, 2010, 31(7): 2072–2078. doi: 10.3969/j.issn.1000-7598.2010.07.009

    ZHANG K, ZHOU H, PAN P Z, et al. Characteristics of strength of rocks under different unloading rates [J]. Rock and Soil Mechanics, 2010, 31(7): 2072–2078. doi: 10.3969/j.issn.1000-7598.2010.07.009
    [12] LI J Z, LIN F, LIU H F, et al. Triaxial experimental study on changes in the mechanical properties of rocks under different rates of confining pressures unloading [J]. Soil Mechanics and Foundation Engineering, 2019, 56(4): 246–252. doi: 10.1007/s11204-019-09598-3
    [13] 国家质量技术监督局, 中华人民共和国建设部. 工程岩体试验方法标准: GB/T50266—1999 [S]. 北京: 中国标准出版社, 1999.

    State Bureau of Quality and Technical Supervision, Ministry of Construction of the People's Republic of China.Standard for tests method of engineering rock massas : GB/T50266—1999 [S]. Beijing: Standards Press of China, 1999.
    [14] 江权, 冯夏庭, 李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用 [J]. 岩石力学与工程学报, 2019, 38(6): 1081–1101. doi: 10.13722/j.cnki.jrme.2018.1147

    JIANG Q, FENG X T, LI S J, et al. Cracking-restraint design method for large underground caverns with hard rock under high geostress condition and its practical application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081–1101. doi: 10.13722/j.cnki.jrme.2018.1147
    [15] 郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究 [J]. 岩石力学与工程学报, 2014, 33(2): 296–308.

    GUO J Q, LIU X L, QIAO C S. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296–308.
    [16] AL-AJMI A M, ZIMMERMAN R W. Relation between the Mogi and the Coulomb failure criteria [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 431–439. doi: 10.1016/j.ijrmms.2004.11.004
    [17] 罗吉安, 刘丰茂, 刘之喜, 等. 基于八面体理论的岩石循环加-卸载本构模型及修正 [J]. 高压物理学报, 2020, 34(2): 024202. doi: 10.11858/gywlxb.20190797

    LUO J A, LIU F M, LIU Z X, et al. Study and correction of cyclic loading-unloading constitutive model of rock based on octahedral theory [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024202. doi: 10.11858/gywlxb.20190797
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  6025
  • HTML全文浏览量:  2677
  • PDF下载量:  64
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-09-12

目录

    /

    返回文章
    返回